Replacing 50 Year Old Regex
nology with Rosie Pattern Language

On the interwebs:

@jamietheriveter

https://rosie-lang.org
https://qgitlab.com/rosie-pattern-language

http://twitter.com/jamietheriveter
http://twitter.com/jamietheriveter
http://rosie-lang.org
https://gitlab.com/rosie-pattern-language

:-". mnordhoff / gist:2213179 % Star 8 YFork 1

Last active 2 months ago « Report gist

<> Code -0~ Revisions 11 Stars 8 . Forks 1 Embed v <script src="https://gi: E& [Download ZIP

Python regular expressions for IPv4 and IPv6 addresses and URI-references, based on RFC 3986's ABNF.The URI-reference regular
expression includes IPv6 address zone ID support (RFC 6874).

o] gistfilel.py Raw

Python regular expressions for IPv4 and IPv6 addresses and URI-references,
based on RFC 3986's ABNF.

#

#

#

ipv4_address and ipv6_address are self-explanatory.

ipv6_addrz requires a zone ID (RFC 6874) follow the IPv6 address. R
ipv6_address_or_addrz allows an IPv6 address with optional zone ID.

uri_reference is what you think of as a URI. (It uses ipv6_address_or_addrz.)

import re

ipv4_address = re.compile('~(?:(?:[0-9]1|[1-9]1[0-9]|1[0-9]1{2}|2[0-4][0-9]|25[0-5])\\.){3}(?:[0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4] [0-
ipv6_address = re.compile('~(?:(?:[0-9A-Fa-f1{1,4}:){6}(?: [0-9A-Fa-f1{1,4}: [0-9A-Fa-f]{1,4}|(?:(?:[0-9]|[1-9][0-9] |1[0-9]1{2}|2I
ipv6_addrz = re.compile('~(?:(?:[0-9A-Fa-f1{1,4}:){6}(?: [0-9A-Fa-f]{1,4}: [0-9A-Fa-f]1{1,4}|(?:(?:[0-9] | [1-9] [0-9] |1[0-9]{2}|2[0-
ipv6_address_or_addrz = re.compile('~(?:(?: [0-9A-Fa-f]{1,4}:){6}(?: [0-9A-Fa-f]{1,4}: [0-9A-Fa-f]1{1,4}|(?:(?:[0-9]|[1-9][0-9]|1[0
uri_reference = re.compile("~(?:([A-Za-z] [A-Za-z0-9+\\-.1%x):(?2://((?2:(?2:(?:%[0-9A-Fa-f]{2}| [!$&" ()*+, ;=A-Za-z0-9\\-._~]) |:)*@)?

len(ipv4_address) == 111

len(ipv6_address) == 1501

len(ipv6_addrz) == 1541

len(ipv6_address_or_addrz) == 1546
len(uri_reference) == 4445

:-". mnordhoff / gist:2213179 % Star 8 YFork 1

Last active 2 months ago « Report gist

<> Code -0~ Revisions 11 Stars 8 . Forks 1 Embed v <script src="https://gi: E& [Download ZIP

Python regular expressions for IPv4 and IPv6 addresses and URI-references, based on RFC 3986's ABNF.The URI-reference regular
expression includes IPv6 address zone ID support (RFC 6874).

o] gistfilel.py Raw

Python regular expressions for IPv4 and IPv6 addresses and URI-references,
based on RFC 3986's ABNF.

#

#

#

ipv4_address and ipv6_address are self-explanatory.

ipv6_addrz requires a zone ID (RFC 6874) follow the IPv6 address. R
ipv6_address_or_addrz allows an IPv6 address with optional zone ID.

uri_reference is what you think of as a URI. (It uses ipv6_address_or_addrz.)

import re

ipv4_address = re.compile('~(?:(?:[0-9]1|[1-9]1[0-9]|1[0-9]1{2}|2[0-4][0-9]|25[0-5])\\.){3}(?:[0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4] [0-
ipv6_address = re.compile('~(?:(?:[0-9A-Fa-f1{1,4}:){6}(?: [0-9A-Fa-f1{1,4}: [0-9A-Fa-f]{1,4}|(?:(?:[0-9]|[1-9][0-9] |1[0-9]1{2}|2I
ipv6_addrz = re.compile('~(?:(?:[0-9A-Fa-f1{1,4}:){6}(?: [0-9A-Fa-f]{1,4}: [0-9A-Fa-f]1{1,4}|(?:(?:[0-9] | [1-9] [0-9] |1[0-9]{2}|2[0-
ipv6_address_or_addrz = re.compile('~(?:(?: [0-9A-Fa-f]{1,4}:){6}(?: [0-9A-Fa-f]{1,4}: [0-9A-Fa-f]1{1,4}|(?:(?:[0-9]|[1-9][0-9]|1[0
uri_reference = re.compile("~(?:([A-Za-z] [A-Za-z0-9+\\-.1%x):(?2://((?2:(?2:(?:%[0-9A-Fa-f]{2}| [!$&" ()*+, ;=A-Za-z0-9\\-._~]) |:)*@)?

len(ipv4_address) == 111

len(ipv6_address) == 1501

len(ipv6_addrz) == 1541

len(ipv6_address_or_addrz) == 1546
len(uri_reference) == 4445

Raison d'étre

T0 Do List

/. Mine data from tools

Z-. Make predictions
that help developers

http://www.ibm.com

Raison d'étre

To Do List

/. Mine data from tools

Z-. Make predictions
that help developers

http://www.ibm.com

Raison d'étre

To Do List

/. Mine data from tools

Z-. Make predictions
that help developers

= My team had to write lots of regex

http://www.ibm.com

Raison d'étre

To Do List
/. Mine data from tools 2 B B & AN N 41 © ¥ om L
Z-. Make predictions O T O @ ® H & @ -

that help developers

= My team had to write lots of regex

= \\Ve found that regex technology does not scale
1. # of people, over time
2. # of patterns
3. data volume and velocity

http://www.ibm.com

Raison d'étre

To Do List
/. Mine data from tools Z B B v AN gl © ¥ um .
/.. Make predictions O s ® H & @ .

that help developers

= My team had to write lots of regex

= \\Ve found that regex technology does not scale
1. # of people, over time
2. # of patterns
3. data volume and velocity

= So | designed Rosie Pattern Language

http://www.ibm.com

Raison d'étre

To Do List

/. Mine data from tools

Z-. Make predictions
that help developers

= My team had to write lots of regex

= \\Ve found that regex technology does not scale > V

1. # of people, over time ., GitLab
2. # of patterns osieriang.org
3. data volume and velocity

= So | designed Rosie Pattern Language

http://www.ibm.com

Raison d'étre

To Do List

/. Mine data from tools

Z-. Make predictions
that help developers

= My team had to write lots of regex

= \\Ve found that regex technology does not scale
1. # of people, over time
2. # of patterns
3. data volume and velocity

= So | designed Rosie Pattern Language

S _

GitLab

rosie-lang.org

> NC STATE
UNIVERSITY

Department of
Computer Science

http://www.ibm.com

Current ac

“If the only tool you have is a ha

On the command line:
grep -v “ M\ |\ [N/ \/”

egrep -0 '((\A{1,3D([.]\NA{L,3}) {2} [\w+([.]\w+)+)
sed -e :a' - 'N'-e '$!ba' -e 's/\n/ /¢

On the command line:
grep -v “ M\ |\ [N/ \/”

egrep -0 '((\A{1,3D([.]\NA{L,3}) {2} [\w+([.]\w+)+)
sed -e :a' - 'N'-e '$!ba' -e 's/\n/ /¢

Regex are notoriously hard to read & maintain

= Dense, cryptic syntax

= Semantics vary across implementations

= Flags that affect the semantics are not part of the pattern

= Regex do not easily compose

‘Some people, when confronted with a problem, think
I know, I'll use regular expressions.’
Now they have two problems.”

Jamie ZawinsKi
http://regex.info/blog/2006-09-15/247

http://regex.info/blog/2006-09-15/247
http://regex.info/blog/2006-09-15/247
http://regex.info/blog/2006-09-15/247

Regular expressions

Match a date with slashes, like 1/1/1970:

“\d{1,2}\/\d{1,2}\/\d{4}$

Match an email address (obviously!):

A((?>[a-zA-Z\A'#S%&' *+\—/=?"_‘ {1 }~]1+\x20%|" ((?
=[\x01-\x7£]) [*"\\]I\\[\x01-\x7£]) *"\x20%) * (7
<angle><))?((?2!'\.) (?>\.?[a-zA-Z\A'#S%&"'*+\-/="
A {1 ~TH)HI T ((?=[\x01-\x7£]) [*"\\]I\\[\x01-
\xX7£1)*")Q(((?!'-) [a-zA-Z\dA\-]+(?<!'-)\.)+[a-zA-Z]
{2, }INLCC(?2(?<'\[)\.) (25[0-5]|2[0-4]\d| [01]?\d?
\d)) {4} | [a-zA-Z\d\-]*[a-zA-Z\d]: ((?=[\x01-\x7f])
[*\N\NNINTTINN[\x01-\x7£])+)\]) (? (angle)>)$

Regular expressions Rosie Pattern Language

Match a date with slashes, like 1/1/1970: 1
{ date.slashed ¢}
"\d{1,2}\/\d{1,2}\/\d{4}$ ik

Match an email address (obviously!):

A((?>[a-zA-Z\A'#S%&' *+\—/=?"_‘ {1 }~]1+\x20%|" ((?
=[\x01-\x7£]) [*"\\]I\\[\x01-\x7£]) *"\x20%) * (7
<angle><))?((?2!'\.) (?>\.?[a-zA-Z\A'#S%&"'*+\-/="
A {1 ~TH)HI T ((?=[\x01-\x7£]) [*"\\]I\\[\x01-
\xX7£1)*")Q(((?!'-) [a-zA-Z\dA\-]+(?<!'-)\.)+[a-zA-Z]
{2, }INLCC(?2(?<'\[)\.) (25[0-5]|2[0-4]\d| [01]?\d?
\d)) {4} | [a-zA-Z\d\-]*[a-zA-Z\d]: ((?=[\x01-\x7£f])
[*\N\NNINTTINN[\x01-\x7£])+)\]) (? (angle)>)$

{ net.email

Other regex collections”? Grok does this.

Grok sits on top of regular expressions, so any regular expressions are valid in
grok as well. The regular expression library is Oniguruma, and you can see the full
supported regexp syntax on the Oniguruma site.

A
Analysis

W A“

/ Monitoring
/ logstash

Alerting
l.lII

=

o ©

Other regex collections”? Grok does this.

Grok sits on top of regular expressions, so any regular expressions are valid in
grok as well. The regular expression library is Oniguruma, and you can see the full
supported regexp syntax on the Oniguruma site.

A
Analysis

Caveats I I \. /
+ Name collisions? Some versions will use the LL ——

Archiving
first the last / | :
+ Illrc? psaecir;,gSeOsmr?ierae rcf;/ or dependencies - "‘
| | / oostach T Monitoring
/ ogstas

+ They are still unreadable and unmaintainable!
Alerting
-IIII

<

o ©

And they don't play well with dev tools

grok$ diff orig copy
18c18

< QUOTEDSTRING (?>(?<!\\)(?>"(?>\\. |

26Cc26

< IPV6 ((([0-9A-Fa-f1{1,4}:){7}([0-9A-Fa-f]{1,4}]|:))
«?\d) (\.(25[0-5]1|2[@0-4]1\d|1\d\d | [1-9]12\d)){3})|:)) | ((
@d| [1-9]17\d) (\.(25[0-5]1|2[0-4]1\d|1\d\d|[1-912\d)){3}) |:)) | (([0-9A-Fa-f1{1,4}:){4}(((:[0-9A-

> QUOTEDSTRING (?>(?(?2<!\)(?>"(7?>\\.

NN TH) " LS T (2ANG [NN H) 40) [P27 (AN [I\ T+H)+7) | 7))

[ANN"TH)4+" " (25 (25\N\L | [N\ H)+") | " (27 (25\\. [[\\']+)+7) | " 7))

(([0-9A-Fa-f]1{1,4}:){6}(: [0-9A-Fa-f]1{1,4}|((25[0-5]|2[0-4]\d|1\d\d|[1-9] @
(0-9A-Fa-f1{1,4}:){5}(((:[0-9A-Fa-f]{1,4}){1,2})|:((25[0-5]|2[0-4]\d|1\d\ @

Fa-f]{1)4}){1)3})|((:[G—QA—Fa_f]{l,i

€4})?7:((25[0-5]1|2[0-4]\d|1\d\d | [1-9]?\d) (\. (25[0-5] |2[0-4]\d |1\d\d | [1-9]?\d)){3}))|:)) | (([0-9A-Fa-f]1{1,4}:){3}(((:[0-9A-Fa-f]{ @
©1,4}){1,4}) |((:[0-9A-Fa-f]{1,4}){0,2}:((25[0-5] |2[0-4]\d|1\d\d | [1-9]?\d) (\.(25[0-5]|2[0-4.

§A-Fa-f]1{1,4}:){2}(((: [0-9A-Fa-f]{1,4}){1,5})

((:[0-9A-Fa-f]{1,4}){0,3}:((25[0-5] |2[0-4]\d

\d|1\d\d | [1-9]12\d)){3}))|:)) | (([0-9&
1\d\d | [1-917\d) (\. (25[0-5] |2[0-4]\d 2

& |1\d\d| [1-9]1?\d)){3}))|:)) | (([0-9A-Fa-f]{1,4}:){1}(((:[0-9A-Fa-f]{1,4}){1,6})|((:[0-9A-Fa-f]{1,4}){0,4}:((25[0-5]|2[0-4]\d|1\=

Gd\d|[1-9]17\d) (\.(25[0-5] |2[@-4]\d |1\d\d | [1-9]

2\d)){3}))|:)) | (:(((:[0-9A-Fa-f1{1,4}){1,7})

& [2[0-4]\d|1\d\d | [1-9]7?\d) (\. (25[0-5] |2[0-4]\d |1\d\d| [1-9]1?\d)){3})) |:))) (%.+)?

((:[0—9A—Fa—f]{1p4}){015}:((25[0‘5]?

> IPV6 ((([0-9A-Fa-f]1{1,4}:){7}([0-9A-Fa-f]1{1,4}|:))|(([0-9A-Fa-f]{1,4}:){6}(:[0-9A-Fa-f]{1,4}|((25[0-5]|2[0-4]\d|1\d\d|[1-9] =
((

@7\d) (\.(25[0-5] |2[0-4]1\d|1\d\d

Gd| [1-917\d) (\. (25[0-5] |2[@-4]1\d|1\d\d | [1-9.

€4})7:((25[0-51|2[0-4]1\d|1\d\d|

«1,43){1,4})|((:[0-9A-Fa-f]{1,4}){0,3}:((25
@A-Fa-f1{1,4}:){2}(((:[0-9A-Fa-f1{1,4}){1,5})

[1-9]17\d)){3})

[1-9]172\d) (\. (25

1))

((:[0-9A-Fa-f]{1,4}){0,3}:((25[0-5] |2[0-4]\d

0-9A-Fa-f1{1,4}:){5}(((: [0-9A-Fa-f1{1,4}){1,2})|: ((25[0-5] |2[0-4]1\d|1\d\ =
2\d)){3}) |:)) | (([0-9A-Fa-f1{1,4}:){4}(((:[0-9A-
0-5] |2[0-4]1\d|1\d\d | [1-917\d)){3}))|:)) | (([0-9A-Fa-f1{1,4}:){3}(((:[0-9A-Fa-fl{®
0-5] |2[0-4]1\d|1\d\d | [1-917\d) (\. (25[0-5] |2 [0-4]

Fa-f]1{1,4}){1,3})|((:[0-9A-Fa-f]{1, @

\d|1\d\d | [1-9]12\d)){3}))|:)) | (([0-9&
1\d\d | [1-917\d) (\. (25[0-5] |2[0-4]\d 2

& |1\d\d| [1-9]?\d)){3}))|:)) | (([0-9A-Fa-f]1{1,4}:){1}(((: [0-9A-Fa-f]{1,4}){1,6})|((:[0-9A-Fa-f]{1,4}){0,3}:((25[0-5]|2[0-4]\d|1\ &

Gd\d|[1-917\d) (\. (25[0-5]|2[0-4]1\d|1\d\d | [1-9]

2\d)){3}))[:)) | (:(((:[0-9A-Fa-f]1{1,4}){1,7})

G [2[0-41\d|1\d\d | [1-9]17\d) (\. (25[0-5] |2[0-4]\d |1\d\d | [1-912\d)){3})) |:))) (%.+)?

grok$

((:[0-9A-Fa-f1{1,4}){0,5}:((25[0-5] @

And they don't play well with dev tools

| grok$ diff orig copy
' 18c18
| < QUOTEDSTRING (7> (48 L L T L N N T

> QUOTEDSTRING (7> (] RPL has syntax like a programming language

26c26

< IPV6 ((([0-9A-Fa- ~4]\d|1\d\d|[1-9] @
&7\d) (\.(25[0-5] |20 251 12[0-41\d|1\d\ 2
@d| [1-9]17\d) (\.(25[@ ' | ((: [0-9A-Fa-f1{1, @
G43})7: ((25[0-5]2[0- — | rgadg like code 3}(((:[0-9A-Fa-f1{®
crraritnar i@ — It diffs like code) (33 [0-1 |210-41d8
G |[1\d\d|[1-9]17\d)){3 :)5[0-5] |2[0-4]1\d |1\ =
gd\d| [1-917\d) (\. (2 — |t debugs like code 43){0,5}: ((25[0-5] @

€ |2[0-4]\d|1\d\d | [1

> IPV6 ((([0-9A-Fa- 0-4]\d|1\d\d| [1-9] @
«?7\d) (\.(25[0-5]|2[@ 0-5]1|2[0-4]\d|1\d\ =@
&d| [1-91?2\d) (\.(25[@ | ((: [0-9A-Fa-f]{1, @
§4})7:((25[0-5]|2[0- 3}(((:[0-9A-Fa-fl{®
'Gl 4%){1,4}) | ((:[0-9 : : : : §))133)):)) [(([0-9=
SA-Fa-f1{1,4}:){2}(® A= ; - , 4 Y A A AAY 31780 . (25[0-5]1|2[0-4]\d=
li 1\d\d | [1- 9]7\d)){3}))|))|(([0 _9A- Fa f]{l 4}:){1}((([0 OA-Fa- f]{1 4}){1 6})|(([0-9A-Fa-f]{1, 4}){@ 3} ((25[0 -5]12[0-4]\d |1\ =
&@d\d| [1-9]1?\d) (\.(25[0-5] |2[0-4]\d |1\d\d | [1-9]1?\d)){3}))|:)) | (:(((:[0-9A-Fa-f]1{1,4}){1,7})|((:[0-9A-Fa-f]1{1,4}){0,5}:((25[0-5] =
G [2[0-4]\d|1\d\d | [1-9]?\d) (\. (25[0-5] |[2[@-4]\d|1\d\d | [1-9]?\d)){3}))|:))) (%.+)?
- grok$

Regex performance is surprisingly variable

Regular expression matching can be very efficient:
linear time in the size of the input.

“The worst-case exponential-time backtracking strategy

[Is] used almost everywhere [but grep and REZ2], including
ed, sed, Perl, PCRE, and Python.”

(Russ Cox https://swtch.com/~rsc/regexp/regexp2.htmil)

https://swtch.com/~rsc/regexp/regexp2.html)
https://swtch.com/~rsc/regexp/regexp2.html)
https://swtch.com/~rsc/regexp/regexp2.html)

Regex performance is surprisingly variable

Matching this 29-character string takes around 36 seconds in Perl*
$input = “aaaaaaaaaaaaaaaaaaaaaaaaaaaaa’;
$re = “a?a?a?a?a?a?a?a?a?a?a?a’?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a”?
aaaaaaaaaaaaaaaaaaaaaaaaaaaaa’;

And this more realistic example takes around 65 seconds in Perl”
$input = “1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,
Bronze,Bronze,Gold,Silver™;
$re = “M.*?,){29)Gold”;

(*) Perl 5.16.3 darwin-thread-multi-2level

Regex performance is surprisingly variable

RS T . R g o b

In RPL, expressions are greedy and possessive.

Perl”
—» Backtracking is explicit PP
— To get exponential backtracking, you write it that way
— Joday (v1.1.x) such RPL patterns have exponential size
RPL makes it difficult to be accidentally inefficient. 525 o6

(*) Perl 5.16.3 darwin-thread-multi-2level

Rosle Patte

"All progress depends on the unree
George Berne

RPL Is designed like a programming language

———— —%— Mode: rpl; -—*-

——== json.rpl rpl patterns for processing json input

———— © Copyright IBM Corporation 2016, 2017.
———— LICENSE: MIT License (https://opensource.org/licenses/mit-license.html)
———— AUTHOR: Jamie A. Jennings

package json
import word, num
local key = word.dq

local string word.dq
local number num.signed_number

local true = "true"
local false = "false"
local null = "null"

grammar
value = ~ string / number / object / array / true / false / null
member = key ":" value
object = "{" (member ("," member)x)? "}"
array = "[" (value ("," value)x)? "]"

end

—-— test value accepts "true", "false", "null"

-— test value rejects "ture"™, "f", "NULL"

-— test value accepts "0", "123", "-1", "1.1001", "1.2el10", "1l.2e-10", "+3.3"

—-— test value accepts "\"hello\"", "\"this string has \\\"embedded\\\" double quotes\""
—— test value rejects "hello"”, "\"this string has no \\\"final quote\\\" "

-— test value rejects "--2", "9.1.", "9.1.2", "++2", "2E02."

—— test value accepts "[]", "I[1, 2, 3.14, \"V\", 6.02e23, truel", "I[1, 2, [7], [I[8]]]"
—— test value rejects "[I1]"™, "™, "[IL]", "{1, 2}"

—— test value accepts "{\"one\":1}", "{ \"one\" :1}", "{ \"one\" : 1 }"
—— test value accepts "{\"one\":1, \"two\": 2}", "{\"one\":1, \"two\": 2, \"array\":[1,2]}"
—— test value accepts "[{\"v\":1}, {\"v\":2}, {\"v\":3}]"

RPL Is designed like a programming language

———— —%-— Mode: rpl; -—x-

———= json.rpl rol patterns for processing json input
*t?’ ———— © Copyright IBM Corporation 2016, 2017.
<:\ ———— LICENSE: MIT License (https://opensource.org/licenses/mit-1license.html)
———— AUTHOR: Jamie A. Jennings

package json
o2
\j;\ import word, num
@OQ local key = word.dq

6 local string = word.dq
(local number = num.signed_number

\Q> local true = "true"
{:\ local false = "false"
6@ % local null = "null"
\\ QSSD grammar
6Q value = ~ string / number / object / array / true / false / null
member key ":" value

“{" (member ("," member)x)? "}"

bject
@‘(\\ ‘Q\g gr]r§§ = "[" (value ("," value)x)? "]"
.\@

end

éi;\e\ —— test value accepts "true", "false", "null"

6 —— test value rejects "ture", "f", "NULL"
qé>» —— test value accepts "o", "123", "-1", "1.1001", "1.2el10", "1.2e-10", "+3.3"

<S§“ ¢xé?> —-— test value accepts "\"hello\"", "\"this string has \\\"embedded\\\" double quotes\""
\\' —— test value rejects "hello", "\"this string has no \\\"final quote\\\" "
-— test value rejects "--2", "9.1.", "9.1.2", "++2", "2E02."

\\:> ‘<5:;E) —- test value accepts "[]", "I[1, 2, 3.14, \"V\", 6.02e23, truel", "I[1, 2, [7], [[8]]]"

<:, cﬁss\ —- test value rejects "[11", "I["™, "[[]", "{1, 2}"
‘2} N
‘§§b\ <§§' —— test value accepts "{\"one\":1}", "{ \"one\" :1}", "{ \"one\" : 1 }"
Q —— test value accepts "{\"one\":1, \"two\": 2}", "{\"one\":1, \"two\": 2, \"array\":[1,2]}"

—— test value accepts "[{\"v\":1}, {\"v\":2}, {\"v\":3}]"

Can your ‘grep’ do this?

Q NAMED PATTERNS

$ curl -s www.google.com | rosie grep -o subs net.url
http://schema.org/WebPage
http://www.google.com/imghp?hl=en&tab=wi
http://maps.google.com/maps?hl=en&tab=wl
https://play.google.com/?hl=en&tab=w8
http://www.youtube.com/?gl=US&tab=wl
http://news.google.com/nwshp?hl=en&tab=wn
https://mail.google.com/mail/?tab=wm
https://drive.google.com/?tab=wo
https://www.google.com/intl/en/options/
http://www.google.com/history/optout?hl=en
https://accounts.google.com/ServicelLogin?hl=en&passive=true&continue=http://www.google.com/
https://plus.google.com/116899029375914044550

$

-0 Output format
subs ==> sub-matches

pattern net.url_common
==> package net, pattern url

Can your ‘grep’ do this?

CUSTOMIZABLE
OUTPUT

HIGHLIGHTING

$ rosie match 'word.any (net.any)+' resolv.conf
abc.aus.examp le.com

1bm.com mylocaldomain.myisp.net example.com
192.9.201.1

192.9.201.2
de9:4789:96dd:03bd: :1

Can your ‘grep’ do this?

CUSTOMIZABLE
OUTPUT

HIGHLIGHTING

$ rosie match 'word.any (net.any)+' resolv.conf
abc.aus.examp le.com

1bm.com mylocaldomain.myisp.net example.com
192.9.201.1

192.9.201.2
de9:4789:96dd:03bd: :1

$ rosie ——colors='net.1ipv4=blue;bold’' match 'word.any (net.any)+' resolv.conf
domain abc.aus.example.com

search 1bm.com mylocaldomain.myisp.net example.com
nameserver 192.9.201.1

nameserver 192.9.201.2

nameserver fde9:4789:96dd:03bd::1

$

CUSTOMIZABLE
OUTPUT
HIGHLIGHTING

Can your ‘grep’ do this?

$ sed -n 46,49p /var/log/system.log
Jul 30 10:18:42 Jamies—-Compabler com.apple.xpc.launchd[1l] (com.apple.CoreSimulator.CoreSimulatorService
[669]): Service exited due to signal: Killed: 9 sent by com.apple.CoreSimulator.CoreSimu[669]

Jul 30 10:18:42 Jamies—-Compabler systemstats[71]: assertion failed: 17G65: systemstats + 914800 [D1E75C
38-62CE-3D77-9ED3-5F6D38EF0676] : 0x40

Jul 30 10:18:43 Jamies—Compabler ContainerMetadataExtractor[92065]: objc[92065]: Class BRMangledID is 1i
mplemented in both /System/Library/PrivateFrameworks/CloudDocs.framework/Versions/A/CloudDocs (@x7fff8b
848c88) and /System/Library/PrivateFrameworks/CloudDocsDaemon. framework/XPCServices/ContainerMetadataEx
tractor.xpc/Contents/Mac0S/ContainerMetadataExtractor (0x10a8e0528). One of the two will be used. Which
one 1s undefined.

Jul 30 10:18:50 Jamies—Compabler systemstats[71]: assertion failed: 17G65: systemstats + 914800 [D1E75C
38-62CE-3D77-9ED3-5F6D38EF0676] : 0x40

$

$ sed -n 46,49p /var/log/system.log | rosie match all.things

Jul 30 10:18:42 - com.apple.xpc. launchd[1l] (com.apple.CoreSimulator.CoreSimulatorService

[669]): : : 9 com.apple.CoreSimulator.CoreSimu[669]

Jul 30 10:18:42 - [71]: : 17G65: + 914800 [D1E/5C

38=-62CE-3D77-9ED3-5F6D38EF0676]: 0x40

Jul 30 10:18:43 - [92065]: [92065]: BRMang ledID
/System/Library/PrivateFrameworks/CloudDocs. framework/Versions/A/CloudDocs (@x7fff8b

848c88) /System/Library/PrivateFrameworks/CloudDocsDaemon. framework/XPCServices/ContainerMetadataEx

tractor.xpc/Contents/Mac0S/ContainerMetadataExtractor (0x10a8e0528).

Jul 30 10:18:50 - [71]: : 17G65: + 914800 [D1E/5C
36=62CE-3D77-9ED3-5F6D38EF0676]: 0x40

$ [

STRUCTURED

Can your ‘grep’ do this?
OUTPUT OPTION

$ head -n 1 /var/log/system.log | rosie grep -o jsonpp num.denoted_hex
{nsn: 1'
nen: 80,
"data": "Jul 29 16:17:13 Jamies—-Compabler timed[90268]: settimeofday({@x5b5e20c9,0x75bd3",
"subs":
[{IISII : 62,
nen: 72,
"data": "0x5b5e20c9",
"subs":
[{nsn: 64,
nen: 72’
"data': "5b5e20c9", w«
"type": "num.hex"}],
"type": "num.denoted_hex"},
{nsn: 73’ -
nen: 80,
"data": "@x75bd3", €— Tt
"subs": o
[{nsu: 75'
nen: 80,
"data": "75bd3", 4
"type": "num.hex"}],
"type": "num.denoted _hex"}],
lltypell: ll*ll}
$

Matching line

N,
b,
I
.....
b,
b,
I

num.denoted hex

N,y
N,y
Ny
a
.....
b,
b,
a,
b,

+ num.hex, a sub-match

Rosle
Implementation

{Il ll
Ilell " 12

"type": "net.any",
"data": '"192.168.0.1",

"subs":
Your § patterns T 1,
e 12,

"type": "net.1ip",
\\v// "data": "192.168.0.1",

""'subs"':
RPL gt 1
Compiler

||e|| . 12’
"type'": "net.1ipv4",
"data": "192.168.0.1"}]

é »ueveldﬁin"é'nf dlalysId g +]
iz ""*sear Ch S, ‘
£ §oftware 1SalL.eRs.
(G2 vl litechnulugyE ‘m iSE ﬁ-l—lé'g ?" ’1
w”m = - -
ECS] T (AN 192.168.0.1
(S R e — b= = 2
=1 ICSI=S U6 ST |22
:.t% =i] trinti gl -E‘—IE | @ . : ‘* ¢
fh esearch D N
DiliOn: sxsrges o — 5 2 = B 1
£l urmatl I = ==
nmcessmgm‘ p ° e\ N -'/ %

Matchlng Englne

Performe

‘| want to believe”

Total time (seconds)

250.00

225.00

200.00

175.00

150.00

125.00

100.00

75.00

50.00

25.00

0.00

® rosie -0 json

® rosie_dev -0 json
grok/ruby

+ grok/jruby

Grok/ruby

Failed with utf8 error
before finishing

Grok/jruby

Failed with utf8 error
before finishing

1,000,000

2,000,000 3,000,000
Number of input lines (syslog)

4,000,000

Performance

Worse

Rosie 1.0.0 \7

~“Rosie 1.1.0

Better
" Notes: h
1. Log entry parsing is one narrow use case.
2. Hard to design fair comparisons.
3. Rosie output is nested JSON; Grok output
. isflat lists. Dy

Debugging

“To err is human, but to really fc
need a computer.”

Trace a (mis-)match

¢ date | rosie match date.us_dashed

$

$ date | rosie match date.us_dashed

$:
¢ date | rosie trace date.us_dashed Trace a (mIS-)matCh

Expression: {month "-" day "-" short_long_year}
Looking at: {Mon Jul 30 12:43:09 EDT 2018)» (input pos =
No match

Pattern definition

—— Expression: month
Looking at: {Mon Jul 30 12:43:09 EDT 2018) (input pos =1
No match
L Expression: {{"1" [0-2]} / {{"e"}? [1-9]}} Input text
Looking at: {Mon Jul 30 12:43:09 EDT 2018)» (input pos = 1)
No match
— Expression: {"1" [0-2]}
Looking at: ¢{Mon Jul 30 12:43:09 EDT 2018) (input pos = 1)
No match
—— Expression: "1"
Looking at: {Mon Jul 30 12:43:09 EDT 2018) (input pos = 1)
No match
—— Expression: [0-2]
Not attempted
—— Expression: {{"0"}? [1-9]}
Looking at: ¢{Mon Jul 30 12:43:09 EDT 2018) (input pos = 1)
No match
—— Expression: "-"
Not attempted
—— Expression: day
Not attempted
—— Expression: "-"]
Not attempted Matching steps

—— Expression: short_long_year
Not attempted

Read-eval-print loop

$ rosie repl

Rosie 1.0.0-sepcomp3

Rosie> import destructure as des
Rosie> .list des.x

Name Cap? Type Color Source
[snip]

numa lpha Yes pattern default;bold destructure
parentheses Yes pattern default;bold destructure
rest Yes pattern default;bold destructure
semicolons Yes pattern default;bold destructure
sep pattern default;bold destructure
s lashes Yes pattern default;bold destructure
term Yes pattern default;bold destructure
tryall pattern default;bold destructure
~ pattern default;bold builtin/prelude

24/24 names shown
Rosie>

Rosie> .match des.tryall "(1.2; 3.77; 0)"
{"data": "(1.2; 3.77; 0)",
"e': 15,
IISII: 1’
"subs":
[{"data": "(1.2; 3.77; 0)",
"e'": 15,
"S": 1'
"subs":
[{"data": "1.2; 3.77; 0",
"e'': 14,
"S": 2’
"subs™:
[{lldatall. ll1.2ll’
"e'": 5,
IISII: 2’
"type": "des.find.<search>"},

.............. S L L RGL L LELE LR EELEEEE LN o 1o
{"data": " 3.77",
"e': 11,
llsll: 6’
Mtype": "des.find. <search>"} |
-- snip

{lldatall. il OII
"e'': 14,

N1, 1"

Read-eval-print loop

4+ Define patterns
+ ITry them
+ Debug (trace) them

Rosie> .match des.tryall "(1.2; 3.77; 0)"
{"data": "(1.2; 3.77; 0)",
"e': 15,
IISII: 1’
"subs":
[{"data": "(1.2; 3.77; 0)",
"e'": 15,
IISII: 1'
"subs":
[{"data": "1.2; 3.77; 0",
"e'': 14,
"S": 2’

"subs":
[{"data"'
"e'": 5,

IISII: 2’
"type": "des.find.<search>"},

.............. S reerrrrsrrrerrerres G
{lldatall: ll p
"e': 11,

llsll. 6’
"type": "des.find. <search>"}

'"""""{-n;a-a-{-a-l;;"l --------------------- Ship
"e'': 14,

N ll, 1"

Read-eval-print loop

4+ Define patterns
+ ITry them
+ Debug (trace) them

Executable unit tests

———— net.rpl Rosie Pattern Language patterns for hostnames, 1p addresses, and such

package net
import num

[snip]

ipv4 = 1p_address_v4
-— test 1ipv4 accepts "0.0.0.0", "1.2.234.123", "999.999.999.,999"
—— test 1pv4 rejects "1234.1.2.3", "1.2.3", "111.222.333.", "111.222.333..444"

ipve = 1ipv6_mixed / ip_address_vb
-— test 1pv6 includes 1ipv4 "::192.9.5.5", "::FFFF:129.144.52.38"
-— test 1pv6 excludes 1ipv4 "1080::8:800:200C:417A", "2010:836B:4179::836B:4179"

Executable unit tests

$ rosie test /usr/local/lib/rosie/rpl/x.rpl

/usr/local/lib/rosie/rpl/all.rpl
all 4 tests passed
/usr/local/lib/rosie/rpl/csv.rpl
no tests found
/usr/local/lib/rosie/rpl/date.rpl
all 89 tests passed
/usr/local/lib/rosie/rpl/id.rpl
all 51 tests passed
/usr/local/lib/rosie/rpl/json.rpl
all 45 tests passed
/usr/local/lib/rosie/rpl/net.rpl
all 125 tests passed
/usr/local/lib/rosie/rpl/num.rpl
all 80 tests passed
/usr/local/lib/rosie/rpl/os.rpl
no tests found
/usr/local/lib/rosie/rpl/time.rpl
all 85 tests passed
/usr/local/lib/rosie/rpl/ts.rpl
all 27 tests passed
/usr/local/lib/rosie/rpl/word.rpl
all 20 tests passed
$

@ Part of the documentation
4 Regression when making changes
@ Use them in app build/compile stage

Formal be

“‘Language is a process of free ¢
laws and principles are fixed”

Comparison to regex: RPL is based on a different formalism

Comparison to regex: RPL is based on a different formalism

Parsing Expression Grammars

Comparison to regex: RPL is based on a different formalism

B N
2 >

Parsing Expression Grammars
| | £ Rosie Pattern Language %
= Strictly more powerful than regular expressions f (and all PEG grammars) %

Comparison to regex: RPL is based on a different formalism

B N
2 >

Parsing Expression Grammars
| | £ Rosie Pattern Language %
= Strictly more powerful than regular expressions f (and all PEG grammars) %

= Supports recursive pattern definitions

grammar
ba'L — { II(II bal? II)II }+
end

Comparison to regex: RPL is based on a different formalism

=T o= >
2 >

Parsing Expression Grammars

| | Rosie Pattern Language
= Strictly more powerful than regular expressions f (and all PEG grammars) }

= Supports recursive pattern definitions

grammar
ba'L — { II(II bal? II)II }+
end

Perl: (~(\((?-1)?\))+%)

Comparison to regex: RPL is based on a different formalism

B N
2 >

Parsing Expression Grammars
| | £ Rosie Pattern Language 3
= Strictly more powerful than regular expressions f (and all PEG grammars) %

= Supports recursive pattern definitions

= Packrat implementation guarantees linear time

grammar
ba‘L — { II(II bal? II)II }+
end

Comparison to regex: RPL is based on a different formalism

B N
2 >

Parsing Expression Grammars
| | £ Rosie Pattern Language %
= Strictly more powerful than regular expressions f (and all PEG grammars) %

= Supports recursive pattern definitions
= Packrat implementation guarantees linear time

= Rosie uses a Matching VM implementation

grammar
ba‘L — { II(II ba'L? II)II }+
end

= Uses less space

= Linear time for non-grammar, non-lookaround

Comparison to regex: RPL is based on a different formalism

B N
2 >

Parsing Expression Grammars
| | £ Rosie Pattern Language %
= Strictly more powerful than regular expressions f (and all PEG grammars) %

= Supports recursive pattern definitions
= Packrat implementation guarantees linear time

= Rosie uses a Matching VM implementation

_ grammar
Uses less space bal = € "(" bal? ")" }+
= Linear time for non-grammar, non-lookaround end
= EXpressions are greedy and possessive x ""x" always fails!

{ ! IIXII] }* IIXII

Comparison to regex: RPL is based on a different formalism

B N
2 >

Parsing Expression Grammars
| | £ Rosie Pattern Language %
= Strictly more powerful than regular expressions f (and all PEG grammars) %

= Supports recursive pattern definitions
= Packrat implementation guarantees linear time

= Rosie uses a Matching VM implementation

_ grammar
Uses less space bal = € "(" bal? ")" }+
= Linear time for non-grammar, non-lookaround end
= EXpressions are greedy and possessive x ""x" always fails!

{ ! IIXII] }* IIXII

find:"x"

Comparison to regex: RPL syntax is familiar

RPL gives a concrete syntax for PEGs
= Sequences built by adjacency, plus tokenizing
= Ordered choice expressed by /
= Repetition operators * + ? {n,m}
= Look ahead >, look behind <, negation !

= Character sets with more strict syntax but
extended composability

= Plus declarations, packages, macros

Expression Matches

{Ilall Ilbll} ab

(Ilall Ilbll) a b

Ilall Ilbll a b
Regex RPL

a | b Ilall / Ilbll

a | bc Ilacll / IIbCII

[[] Script.Greek]+

matches
_Fewa oov Koope

Using Roslie In programs

Today: | @ python X
: . GO

»Haskell =

PROGRAMMING
LANGUAGE

Once and future

ﬁ‘dQ Ruby) Java

(P ORACLE N
|
|

Clojure

PRO GRAMMING

Language

Faster

+ Dev time: Better
v library of patterns

+ conformance to RFCs

v composable patterns | readable syntax

v good match pert. + clear semantics (and no flags)

+ plays well with Cheaper
- git/diff + ROl in reduced dev &
- package management maintenance

- build automation (unit tests) + Free open source
software (MIT license)

Additione

36

Patterns in the standard library (v1.0.0)

= Collections
— net.any, date.any, etc.
— all.things

= Commonly needed

— Int, float, hex, and other numbers
— several kinds of identifiers

— path names for Unix and Windows
— GUIDs

= Network patterns

— ip address (v4, v6, mixed), domain name,
email address, url, URI, MAC, HTTP

= [imestamps
— RFC3339, RFC2822, and more than a
dozen other common formats

= CSV data
— delimiters: , ; |
— quoted fields: “foo” or ‘bar’
— escapes: ""or\" or\"\’

= JSON data

— full parse
— match nested and balanced {} []

= Source code features
— 10 popular languages

= De-structuring
- E.g. “CSC316” ==> “CSC”, “316”
- E.g. “1.2,3.77,0) ==>“1.2", “3.77", “0”

= Log files
— syslog constituents (covers most log files)
— Java exceptions, Python tracebacks

Community

Join the Rosie community!

]

%g% Contribute Patterns T Write Tools

Implement features

« Domain-specific » Package info « Optimizations
= Authoritative = Better trace (compact) = Language-specific libs

» E.g. from RFC . Linter » Improve or create

. Python, R, Go,

= Non-English patterns! = Notebook (Jupyter?) > Python, R, Go, Java

. - . . = User-written extensions
= “Looks like” (recognizers) = Integrations

. » Output encoders
« Byte-encoded data? » scikit-learn . Macros
» Spark

» Character sets

Join the Rosie community!

Or: brew install rosie
aI) Also: pip install rosie

Implement features

%{% Contribute Patterns T Write Tools

« Domain-specific » Package info « Optimizations
= Authoritative = Better trace (compact) = Language-specific libs

» E.g. from RFC . Linter » Improve or create
= Non-English patterns! = Notebook (Jupyter?) > Fython, R, Go, Java, ..

. - . . = User-written extensions
= “Looks like” (recognizers) = Integrations

. » Output encoders
« Byte-encoded data? » scikit-learn . Macros
» Spark

» Character sets

1. Mining source code repositories !-!!!-.
= "Micro-grammar” approach: '
How to build static checking systems using orders

of magnitude less code by Brown, Notzli, Engler

®
o

= NCSU students: 6 features x 10 languages

eatures
Comments Class / Fu ndbn Emor String Function
Struct Defs Handling Bodles
anguages

1. Mining source code repositories --_-—---

= "Micro-grammar” approach:

How to build static checking systems using orders
of magnitude less code by Brown, Notzli, Engler

= NCSU students: 6 features x 10 languages

2. Application log processing (streaming or batch)

$ tail -n 3 /var/log/system.log | rosie match all.things

Jul 29 09:48:58 - com.apple.xpc. launchd[1l] (com.apple.quicklook):
Jul 29 09:48:59 - com.apple.xpc. launchd[1l] (com.apple.quicklook[91387]):
Jul 29 09:48:59 — [91389]: DEPRECATED USE :

| =~

eatures
Comments Class / Stri "‘9
Struct Defs Handlho Bodles
"'9U<'='998

1. Mining source code repositories

= "Micro-grammar” approach:

How to build static checking systems using orders
of magnitude less code by Brown, Notzli, Engler

= NCSU students: 6 features x 10 languages

2. Application log processing (streaming or batch)

$ tail -n 3 /var/log/system.log | rosie match all.things

Jul 29 09:48:58 - com.apple.xpc. launchd[1l] (com.apple.quicklook):
Jul 29 09:48:59 - com.apple.xpc. launchd[1l] (com.apple.quicklook[91387]):
Jul 29 09:48:59 - [91389]: DEPRECATED USE :

3. Secure engineering principle: Parse everything!

The most critical risk in every OWASP report since 2003: Injection attacks (unvalidated input)
Best practice: Whitelist valid input, which requires parsing every input

| =~

RPL: Familiar concepts (and syntax)

| RPL expression Matches
| pat* Zero or more copies of pat
| pat+ One or more copies of pat
| pat? Zero or one copies of pat
| pat{n} Exactly n copies of pat
RPL expression Meaning
[:name:] Named character set (see note [a))
[:"name:] Complement of a named character set
f [X-V] Range of characters, from x to y (see note [b))
"x-y] Complement of a character range
.] List of characters (in place of . ..)
b ["e..] Complement of the character list . ..)
F‘ (csl cs2 ...] Union of character sets cs1, cs2, etc. (E.g. [[a-£]1[0-91]) “
[~ csl cs2 ...] Complement of a union of character sets ‘

, RPL expression Meaning

> pat Look ahead at pat (predicate: consumes no input)
|< pat Look behind at pat (predicate: consumes no input)
Ipat Not pat, i.e. not looking at pat. Same as !>pat.

{ RPL expression Meaning
‘;p / q Ordered choice: match p, and p fails, match q

RPL: Familiar concepts (and syntax)

5 RPL expressmn Matches
| pat Zero or more copies of pat
{ pat+ One or more copies of pat
| pat? Zero or one copies of pat
‘ pat{n} Exactly n copies of pat
RPL expression Meaning
[:name:] Named character set (see note [a))
[:"name:] Complement of a named character set
‘7 [X-V] Range of characters, from x to y (see note [b))
[~x-y] Complement of a character range
.] List of characters (in place of .. .)
["eee] Complement of the character list . .. |
csl cs2 ...] Union of character sets cs1, cs2, etc. (E.g. [[a-£]1[0-9]1]) “
[~ csl cs2 ...] Complement of a union of character sets |

| RPL expression Meaning

é> pat Look ahead at pat (predicate: consumes no input)
pat Look behind at pat (predicate: consumes no input)
-j Ipat Not pat, i.e. not looking at pat. Same as !>pat.

{ RPL expression Meaning
‘fp / q Ordered choice: match p, and p fails, match g

RPL: Familiar concepts (and Syntax

f RPL expressmn Matches
| pat* Zero or more copies of pat
| pat+ One or more copies of pat
| pat? Zero or one copies of pat
pat{n} Exactly n copies of pat
RPL expression Meaning

I [cname:]
[: "name:]
}:x—Y]

["x-y]

L .]
:"...]

%:csl cs2 ...]

[* csl cs2 ..
: RPL expression
> pat

;< pat

| lpat

{ RPL expression

Named character set (see note [a))
Complement of a named character set

Range of characters, from x to y (see note [b))
Complement of a character range

List of characters (in place of . ..)
Complement of the character list . . .

Union of character sets cs1, cs2, etc. (E.g. [[a-£]1[0-9]1]) “

.] Complement of a union of character sets

Meaning
Look ahead at pat (predicate: consumes no input)
Look behind at pat (predicate: consumes no input)
Not pat, i.e. not looking at pat. Same as !>pat.

Meaning
Ordered choice: match p, and p fails, match g

DOSSsessive

 + Structured output, not flat
l+ Sane syntax

+ A few key concepts

i+ Auto tokenization

|+ Package system

i+ Macros

Unit tests

i+ REPL ;
i+ Trace output |

Roadmacg

“If you want to go fast, go alone.
If you want to go far, go together.”

Roadmap

- -
e . R e i

-

Roadmap

Extensibility
Pattern generation User-written macros
Algorithmic, e.g. from static analysis User-written output encoders

Statistical / ML

Command line/scripting convenience
Traverse directories
Follow links or not, etc.

Compiler Optimizations

Common subexpression elimination
New vm instructions

Flow analysis

Regex-to-rosie converter
Re-use existing regex —
Give them unit tests " Ahead of time compilation

Debug them e ' Fast startup
— Small matching run-time (~50Kb binary)

Rosle Pattern Language

= Pattern libraries
- Standard library, including full Unicode (UTF-8) support

- Community libraries (e.g. GitHub)
- User libraries

= Qutput formats
- Colorized text for humans
- JSON for programs
- Full lines or just matches (like grep)
- And others...

= Development tools
- Command line interface, read/eval/print loop

- Trace output

- Unit tests (automated) rosie-lang.org
- Packages (shareable) '

= Built for big data but makes a better grep Formal basis:

. . + Parser combinators
Readable, maintainable + Based on Parsing Exp. Grammars

- Works well with git/diff, pipelines (unit tests), dependency mgmt + Good performance, often linear
+ Not a “packrat” implementation

Formal basis

Chomsky hierarch

recursively enumerable

context-sensitive

context-free

regular

Parsing Expression Grammars:
A Recognition-Based Syntactic Foundation

Bryan Ford
Massachusetts Institute of Technology
Cambridge, MA

baford @ mit.edu

Abstract

For decades we have been using Chomsky’s generative system of
grammars, particularly context-free grammars (CFGs) and regu-
lar expressions (REs), to express the syntax of programming lan-
guages and protocols. The power of generative grammars to ex-
press ambiguity is crucial to their original purpose of modelling
natural languages, but this very power makes it unnecessarily diffi-
cult both to express and to parse machine-oriented languages using
CFGs. Parsing Expression Grammars (PEGs) provide an alterna-
tive, recognition-based formal foundation for describing machine-
oriented syntax, which solves the ambiguity problem by not intro-
ducing ambiguity in the first place. Where CFGs express nondeter-
ministic choice between alternatives, PEGs instead use prioritized
choice. PEGs address frequently felt expressiveness limitations of
CFGs and REs, simplifying syntax definitions and making it un-
necessary to separate their lexical and hierarchical components. A
linear-time parser can be built for any PEG, avoiding both the com-
plexity and fickleness of LR parsers and the inefficiency of gener-
alized CFG parsing. While PEGs provide a rich set of operators for
constructing grammars, they are reducible to two minimal recogni-

1 Introduction

Most language syntax theory and practice is based on generative
systems, such as regular expressions and context-free grammars, in
which a language is defined formally by a set of rules applied re-
cursively to generate strings of the language. A recognition-based
system, in contrast, defines a language in terms of rules or predi-
cates that decide whether or not a given string is in the language.
Simple languages can be expressed easily in either paradigm. For
example, {s € a* | s = (aa)"} is a generative definition of a trivial
language over a unary character set, whose strings are “constructed”
by concatenating pairs of a’s. In contrast, {s € a* | (|s| mod 2=0)}
is a recognition-based definition of the same language, in which a
string of a’s is “accepted” if its length is even.

While most language theory adopts the generative paradigm, most
practical language applications in computer science involve the
recognition and structural decomposition, or parsing, of strings.
Bridging the gap from generative definitions to practical recogniz-
ers is the purpose of our ever-expanding library of parsing algo-
rithms with diverse capabilities and trade-offs [9].

tion schemas developed around 1970, TS/TDPL and gTS/GTDPL,
which are here proven equivalent in effective recognition power. Chomsky’s generative system of grammars, from which the ubiqui-

A Text Pattern-Matching
Tool based on Parsing
Expression Grammars

Roberto Ierusalimschy!

' PUC-Rio, Brazil

This is a preprint of an article accepted for publication in Software: Practice and Experience;
Copyright 2008 by John Willey and Sons.

SUMMARY

Current text pattern-matching tools are based on regular expressions. However, pure regular
expressions have proven too weak a formalism for the task: many interesting patterns either are
difficult to describe or cannot be described by regular expressions. Moreover, the inherent non-
determinism of regular expressions does not fit the need to capture specific parts of a match.

Motivated by these reasons, most scripting languages nowadays use pattern-matching tools that
extend the original regular-expression formalism with a set of ad-hoc features, such as greedy
repetitions, lazy repetitions, possessive repetitions, “longest match rule”, lookahead, etc. These
ad-hoc extensions bring their own set of problems, such as lack of a formal foundation and complex
implementations.

In this paper, we propose the use of Parsing Expression Grammars (PEGs) as a basis for pattern
matching. Following this proposal, we present LPEG, a pattern-matching tool based on PEGs for
the Lua scripting language. LPEG unifies the ease of use of pattern-matching tools with the full
expressive power of PEGs. Because of this expressive power, it can avoid the myriad of ad-hoc
constructions present in several current pattern-matching tools. We also present a Parsing Machine
that allows a small and efficient implementation of PEGs for pattern matching.

KEY WORDS: pattern matching, Parsing Expression Grammars, scripting languages

Formal basis

Chomsky hierarch

recursively enumerable
context-sensitive

context-free

= e — .
o — —
~o & =

'*

~reqgular

By J. Finkelstein - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=9405226

Parsing Expression Grammars:
A Recognition-Based Syntactic Foundation

Bryan Ford
Massachusetts Institute of Technology
Cambridge, MA

baford @ mit.edu

Abstract

For decades we have been using Chomsky’s generative system of
grammars, particularly context-free grammars (CFGs) and regu-
lar expressions (REs), to express the syntax of programming lan-
guages and protocols. The power of generative grammars to ex-
press ambiguity is crucial to their original purpose of modelling
natural languages, but this very power makes it unnecessarily diffi-
cult both to express and to parse machine-oriented languages using
CFGs. Parsing Expression Grammars (PEGs) provide an alterna-
tive, recognition-based formal foundation for describing machine-
oriented syntax, which solves the ambiguity problem by not intro-
ducing ambiguity in the first place. Where CFGs express nondeter-
ministic choice between alternatives, PEGs instead use prioritized
choice. PEGs address frequently felt expressiveness limitations of
CFGs and REs, simplifying syntax definitions and making it un-
necessary to separate their lexical and hierarchical components. A
linear-time parser can be built for any PEG, avoiding both the com-
plexity and fickleness of LR parsers and the inefficiency of gener-
alized CFG parsing. While PEGs provide a rich set of operators for
constructing grammars, they are reducible to two minimal recogni-

1 Introduction

Most language syntax theory and practice is based on generative
systems, such as regular expressions and context-free grammars, in
which a language is defined formally by a set of rules applied re-
cursively to generate strings of the language. A recognition-based
system, in contrast, defines a language in terms of rules or predi-
cates that decide whether or not a given string is in the language.
Simple languages can be expressed easily in either paradigm. For
example, {s € a* | s = (aa)"} is a generative definition of a trivial
language over a unary character set, whose strings are “constructed”
by concatenating pairs of a’s. In contrast, {s € a* | (|s| mod 2=0)}
is a recognition-based definition of the same language, in which a
string of a’s is “accepted” if its length is even.

While most language theory adopts the generative paradigm, most
practical language applications in computer science involve the
recognition and structural decomposition, or parsing, of strings.
Bridging the gap from generative definitions to practical recogniz-
ers is the purpose of our ever-expanding library of parsing algo-
rithms with diverse capabilities and trade-offs [9].

tion schemas developed around 1970, TS/TDPL and gTS/GTDPL,
which are here proven equivalent in effective recognition power. Chomsky’s generative system of grammars, from which the ubiqui-

A Text Pattern-Matching
Tool based on Parsing
Expression Grammars

Roberto Ierusalimschy!

' PUC-Rio, Brazil

This is a preprint of an article accepted for publication in Software: Practice and Experience;
Copyright 2008 by John Willey and Sons.

SUMMARY

Current text pattern-matching tools are based on regular expressions. However, pure regular
expressions have proven too weak a formalism for the task: many interesting patterns either are
difficult to describe or cannot be described by regular expressions. Moreover, the inherent non-
determinism of regular expressions does not fit the need to capture specific parts of a match.

Motivated by these reasons, most scripting languages nowadays use pattern-matching tools that
extend the original regular-expression formalism with a set of ad-hoc features, such as greedy
repetitions, lazy repetitions, possessive repetitions, “longest match rule”, lookahead, etc. These
ad-hoc extensions bring their own set of problems, such as lack of a formal foundation and complex
implementations.

In this paper, we propose the use of Parsing Expression Grammars (PEGs) as a basis for pattern
matching. Following this proposal, we present LPEG, a pattern-matching tool based on PEGs for
the Lua scripting language. LPEG unifies the ease of use of pattern-matching tools with the full
expressive power of PEGs. Because of this expressive power, it can avoid the myriad of ad-hoc
constructions present in several current pattern-matching tools. We also present a Parsing Machine
that allows a small and efficient implementation of PEGs for pattern matching.

KEY WORDS: pattern matching, Parsing Expression Grammars, scripting languages

Formal basis

Chomsky hierarch

recursively enumerable

PDESEREY, T V2 T AR - AN
X e . AR,

gdntext-se

-

e » "W
BARS,

nsi

context-free

=, o — .
.~ —_
a X S
.- -~

By J. Finkelstein - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=9405226

Rosie
Pattern
Language
and all PEG
grammars

Parsing Expression Grammars:
A Recognition-Based Syntactic Foundation

Bryan Ford

Massachusetts Institute of Technology
Cambridge, MA

baford @ mit.edu

Abstract

For decades we have been using Chomsky’s generative system of
grammars, particularly context-free grammars (CFGs) and regu-
lar expressions (REs), to express the syntax of programming lan-
guages and protocols. The power of generative grammars to ex-
press ambiguity is crucial to their original purpose of modelling
natural languages, but this very power makes it unnecessarily diffi-
cult both to express and to parse machine-oriented languages using
CFGs. Parsing Expression Grammars (PEGs) provide an alterna-
tive, recognition-based formal foundation for describing machine-
oriented syntax, which solves the ambiguity problem by not intro-
ducing ambiguity in the first place. Where CFGs express nondeter-
ministic choice between alternatives, PEGs instead use prioritized
choice. PEGs address frequently felt expressiveness limitations of
CFGs and REs, simplifying syntax definitions and making it un-
necessary to separate their lexical and hierarchical components. A
linear-time parser can be built for any PEG, avoiding both the com-
plexity and fickleness of LR parsers and the inefficiency of gener-
alized CFG parsing. While PEGs provide a rich set of operators for
constructing grammars, they are reducible to two minimal recogni-

1 Introduction

Most language syntax theory and practice is based on generative
systems, such as regular expressions and context-free grammars, in
which a language is defined formally by a set of rules applied re-
cursively to generate strings of the language. A recognition-based
system, in contrast, defines a language in terms of rules or predi-
cates that decide whether or not a given string is in the language.
Simple languages can be expressed easily in either paradigm. For
example, {s € a* | s = (aa)"} is a generative definition of a trivial
language over a unary character set, whose strings are “constructed”
by concatenating pairs of a’s. In contrast, {s € a* | (|s| mod 2=0)}
is a recognition-based definition of the same language, in which a
string of a’s is “accepted” if its length is even.

While most language theory adopts the generative paradigm, most
practical language applications in computer science involve the
recognition and structural decomposition, or parsing, of strings.
Bridging the gap from generative definitions to practical recogniz-
ers is the purpose of our ever-expanding library of parsing algo-
rithms with diverse capabilities and trade-offs [9].

tion schemas developed around 1970, TS/TDPL and gTS/GTDPL,
which are here proven equivalent in effective recognition power. Chomsky’s generative system of grammars, from which the ubiqui-

A Text Pattern-Matching
Tool based on Parsing
Expression Grammars

Roberto Ierusalimschy!

' PUC-Rio, Brazil

This is a preprint of an article accepted for publication in Software: Practice and Experience;
Copyright 2008 by John Willey and Sons.

SUMMARY

Current text pattern-matching tools are based on regular expressions. However, pure regular
expressions have proven too weak a formalism for the task: many interesting patterns either are
difficult to describe or cannot be described by regular expressions. Moreover, the inherent non-
determinism of regular expressions does not fit the need to capture specific parts of a match.

Motivated by these reasons, most scripting languages nowadays use pattern-matching tools that
extend the original regular-expression formalism with a set of ad-hoc features, such as greedy
repetitions, lazy repetitions, possessive repetitions, “longest match rule”, lookahead, etc. These
ad-hoc extensions bring their own set of problems, such as lack of a formal foundation and complex
implementations.

In this paper, we propose the use of Parsing Expression Grammars (PEGs) as a basis for pattern
matching. Following this proposal, we present LPEG, a pattern-matching tool based on PEGs for
the Lua scripting language. LPEG unifies the ease of use of pattern-matching tools with the full
expressive power of PEGs. Because of this expressive power, it can avoid the myriad of ad-hoc
constructions present in several current pattern-matching tools. We also present a Parsing Machine
that allows a small and efficient implementation of PEGs for pattern matching.

KEY WORDS: pattern matching, Parsing Expression Grammars, scripting languages

Formal basis

Chomsky hierarch

2 ,._A.
L v A TR X5 rp = g
Y- N pyr N - ,,".'~ "

gdntext-se

e » "W
BARS,

context-free

= e — .
Iy —
~o & - -

.- -

By J. Finkelstein - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=9405226

Rosie
Pattern
Language
and all PEG
grammars

Parsing Expression Grammars:
A Recognition-Based Syntactic Foundation

Bryan Ford

Massachusetts Institute of Technology
Cambridge, MA

baford @ mit.edu

Abstract

For decades we have been using Chomsky’s generative system of
grammars, particularly context-free grammars (CFGs) and regu-
lar expressions (REs), to express the syntax of programming lan-
guages and protocols. The power of generative grammars to ex-
press ambiguity is crucial to their original purpose of modelling
natural languages, but this very power makes it unnecessarily diffi-
cult both to express and to parse machine-oriented languages using
CFGs. Parsing Expression Grammars (PEGs) provide an alterna-
tive, recognition-based formal foundation for describing machine-
oriented syntax, which solves the ambiguity problem by not intro-
ducing ambiguity in the first place. Where CFGs express nondeter-
ministic choice between alternatives, PEGs instead use prioritized
choice. PEGs address frequently felt expressiveness limitations of
CFGs and REs, simplifying syntax definitions and making it un-
necessary to separate their lexical and hierarchical components. A
linear-time parser can be built for any PEG, avoiding both the com-
plexity and fickleness of LR parsers and the inefficiency of gener-
alized CFG parsing. While PEGs provide a rich set of operators for
constructing grammars, they are reducible to two minimal recogni-

1 Introduction

Most language syntax theory and practice is based on generative
systems, such as regular expressions and context-free grammars, in
which a language is defined formally by a set of rules applied re-
cursively to generate strings of the language. A recognition-based
system, in contrast, defines a language in terms of rules or predi-
cates that decide whether or not a given string is in the language.
Simple languages can be expressed easily in either paradigm. For
example, {s € a* | s = (aa)"} is a generative definition of a trivial
language over a unary character set, whose strings are “constructed”
by concatenating pairs of a’s. In contrast, {s € a* | (|s| mod 2=0)}
is a recognition-based definition of the same language, in which a
string of a’s is “accepted” if its length is even.

While most language theory adopts the generative paradigm, most
practical language applications in computer science involve the
recognition and structural decomposition, or parsing, of strings.
Bridging the gap from generative definitions to practical recogniz-
ers is the purpose of our ever-expanding library of parsing algo-
rithms with diverse capabilities and trade-offs [9].

tion schemas developed around 1970, TS/TDPL and gTS/GTDPL,
which are here proven equivalent in effective recognition power. Chomsky’s generative system of grammars, from which the ubiqui-

A Text Pattern-Matching
Tool based on Parsing
Expression Grammars

Roberto Ierusalimschy!

' PUC-Rio, Brazil

This is a preprint of an article accepted for publication in Software: Practice and Experience;
Copyright 2008 by John Willey and Sons.

SUMMARY

Current text pattern-matching tools are based on regular expressions. However, pure regular
expressions have proven too weak a formalism for the task: many interesting patterns either are
difficult to describe or cannot be described by regular expressions. Moreover, the inherent non-
determinism of regular expressions does not fit the need to capture specific parts of a match.

Motivated by these reasons, most scripting languages nowadays use pattern-matching tools that
extend the original regular-expression formalism with a set of ad-hoc features, such as greedy
repetitions, lazy repetitions, possessive repetitions, “longest match rule”, lookahead, etc. These
ad-hoc extensions bring their own set of problems, such as lack of a formal foundation and complex
implementations.

In this paper, we propose the use of Parsing Expression Grammars (PEGs) as a basis for pattern
matching. Following this proposal, we present LPEG, a pattern-matching tool based on PEGs for
the Lua scripting language. LPEG unifies the ease of use of pattern-matching tools with the full
expressive power of PEGs. Because of this expressive power, it can avoid the myriad of ad-hoc
constructions present in several current pattern-matching tools. We also present a Parsing Machine
that allows a small and efficient implementation of PEGs for pattern matching.

KEY WORDS: pattern matching, Parsing Expression Grammars, scripting languages

The formal basis of RPL

= Rosie’s operators are parser combinators
— Based on Parsing Expression Grammars

— Not CFG (slow!) or regex (limited!)

— Express all deterministic (unambiguous) CFLs

— And some non-CFLs, e.g. anbncn

— Key advantage: can match recursively structured input

= PEGs [Ford, 2004]

— “Scanner-less parsing”
— Linear time matching (at space cost)
— Languages recognized by PEGs are
= A superset of regular languages
= All languages recognized by LL(k) and LR(k) parsers

= LPEG library [lerusalimschy, 2008]
= Gives a space-efficient PEG matching algorithm

= |_inear time in input size (non-grammars, no look-around)

Parsing Expression Grammars:
A Recognition-Based Syntactic Foundation

Bryan Ford
Massachusetts Institute of Technology
Cambridge, MA

A Text Pattern-Matching
Tool based on Parsing
Expression Grammars

Roberto Ierusalimschy!

' PUC-Rio, Brazil

This is a preprint of an article accepted for publication in Software: Practice and Experience;

Copyright 2008 by John Willey and Sons.

SUMMARY

Current text pattern-matching tools are based on regular expressions. However, pure regular
expressions have proven too weak a formalism for the task: many interesting patterns either are
difficult to describe or cannot be described by regular expressions. Moreover, the inherent non-
determinism of regular expressions does not fit the need to capture specific parts of a match.

Motivated by these reasons, most scripting languages nowadays use pattern-matching tools that
extend the original regular-expression formalism with a set of ad-hoc features, such as greedy
repetitions, lazy repetitions, possessive repetitions, “longest match rule”, lookahead, etc. These
ad-hoc extensions bring their own set of problems, such as lack of a formal foundation and complex
implementations.

In this paper, we propose the use of Parsing Expression Grammars (PEGs) as a basis for pattern
matching. Following this proposal, we present LPEG, a pattern-matching tool based on PEGs for
the Lua scripting language. LPEG unifies the ease of use of pattern-matching tools with the full
expressive power of PEGs. Because of this expressive power, it can avoid the myriad of ad-hoc
constructions present in several current pattern-matching tools. We also present a Parsing Machine
that allows a small and efficient implementation of PEGs for pattern matching.

KEY WORDS: pattern matching, Parsing Expression Grammars, scripting languages

|sed on generative
free grammars, in
f rules applied re-
recognition-based
of rules or predi-
E in the language.
er paradigm. For
finition of a trivial
are “constructed”
| (|s| mod 2= 0)}
guage, in which a

ve paradigm, most
ience involve the
arsing, of strings.
practical recogniz-
y of parsing algo-

which the ubiqui-
expressions (REs)
for modelling and
heir elegance and
nerative grammars
ell. The ability of
tant and powerful
power gets in the
\anguages that are
iguity in CFGs is

Rosie’s matching engine is an

enhanced version of LPEG

Rosie is self-hosting

= Rosle Is a parser, and Rosie Is used to parse Rosie Pattern Language
= About 115 lines of RPL (core version) to define the current RPL version
= Could support multiple versions of RPL, even different dialects

= Non-trivial user extensions to RPL can be enabled by:
— Specifying RPL for the extension (to RPL)
— Writing a compiler “plug-in” for the extension
— The compiler plug-in interface has not yet been designed... hint!

Match non-blank, non-comment lines of RPL:

$ rosie match -o data '!{[:space:]1*%$} !{[:space:]1* "--"}'" rpl 1 2.rpl | wc -1
115

