
Jamie A. Jennings, Ph.D. 
Department of Computer Science 
NC State University 
23 September 2019

Rethinking (Replacing) Regular 
Expressions after 50 Years

@jamietheriveter 
https://rosie-lang.org 

https://gitlab.com/rosie-pattern-language

http://twitter.com/jamietheriveter
http://twitter.com/jamietheriveter
http://rosie-lang.org
https://gitlab.com/rosie-pattern-language


Department of 
Computer Science

http://www.ibm.com


Department of 
Computer Science

http://www.ibm.com


What’s wrong with regex?



Syntax

!4



Syntax

▪Compact (dense) 
– Great for slow terminals!

!4



Syntax

▪Compact (dense) 
– Great for slow terminals!

https://commons.wikimedia.org/wiki/User:AlisonW

!4



Syntax

▪Compact (dense) 
– Great for slow terminals!

▪Efficient (confusing) 
– A symbol can have many meanings! 

– E.g. ^ * - ( ) ?

https://commons.wikimedia.org/wiki/User:AlisonW

!4



Syntax

▪Compact (dense) 
– Great for slow terminals!

▪Efficient (confusing) 
– A symbol can have many meanings! 

– E.g. ^ * - ( ) ?

▪Write and forget (unmaintainable) 
– grep  -v “^#\|^’\|^\/\/”

– egrep ‘((\d{1,3})([.]\d{1,3}){2}|
\w+([.]\w+)+)’ 

https://commons.wikimedia.org/wiki/User:AlisonW

!4



Syntax

▪Compact (dense) 
– Great for slow terminals!

▪Efficient (confusing) 
– A symbol can have many meanings! 

– E.g. ^ * - ( ) ?

▪Write and forget (unmaintainable) 
– grep  -v “^#\|^’\|^\/\/”

– egrep ‘((\d{1,3})([.]\d{1,3}){2}|
\w+([.]\w+)+)’ 

https://commons.wikimedia.org/wiki/User:AlisonW

!4

es



Semantics



Semantics

▪Not that of Regular Languages

Chomsky hierarchy



Semantics

▪Not that of Regular Languages
▪Posix or Perl (or PCRE or js or …)



Semantics

▪Not that of Regular Languages
▪Posix or Perl (or PCRE or js or …)
▪Variations by implementation 
– What does . (dot) match? 

– What does \10 mean?



Semantics

▪Not that of Regular Languages
▪Posix or Perl (or PCRE or js or …)
▪Variations by implementation 
– What does . (dot) match? 

– What does \10 mean?



Semantics

▪Not that of Regular Languages
▪Posix or Perl (or PCRE or js or …)
▪Variations by implementation 
– What does . (dot) match? 

– What does \10 mean?

▪Depends on flags not in the expr!



Semantics

▪Not that of Regular Languages
▪Posix or Perl (or PCRE or js or …)
▪Variations by implementation 
– What does . (dot) match? 

– What does \10 mean?

▪Depends on flags not in the expr!



Semantics

▪Not that of Regular Languages
▪Posix or Perl (or PCRE or js or …)
▪Variations by implementation 
– What does . (dot) match? 

– What does \10 mean?

▪Depends on flags not in the expr!



Semantics

▪Not that of Regular Languages
▪Posix or Perl (or PCRE or js or …)
▪Variations by implementation 
– What does . (dot) match? 

– What does \10 mean?

▪Depends on flags not in the expr!
▪Combining is fraught



Semantics

▪Not that of Regular Languages
▪Posix or Perl (or PCRE or js or …)
▪Variations by implementation 
– What does . (dot) match? 

– What does \10 mean?

▪Depends on flags not in the expr!
▪Combining is fraught

Robert Jacobson: Design's store 



Semantics

▪Not that of Regular Languages
▪Posix or Perl (or PCRE or js or …)
▪Variations by implementation 
– What does . (dot) match? 

– What does \10 mean?

▪Depends on flags not in the expr!
▪Combining is fraught
▪No “persistence” (packaging) std





net.
emai

l







net.
ipv4

net.
ipv6

net.
ip



Expressive Power

!8



▪Regular languages are limited 
– But DFAs are fast!

Expressive Power

!8



▪Regular languages are limited 
– But DFAs are fast!

Expressive Power

!8

Author: bobince;  https://stackoverflow.com/questions/1732348/regex-match-open-tags-except-xhtml-self-contained-tags



▪Regular languages are limited 
– But DFAs are fast!

▪Hence, feature creep 
– Backreferences 

– Conditionals 

– “Subroutines”, Perl6 grammars 

– Recursion

Expressive Power

!8



▪Regular languages are limited 
– But DFAs are fast!

▪Hence, feature creep 
– Backreferences 

– Conditionals 

– “Subroutines”, Perl6 grammars 

– Recursion

▪Yet, static analysis needed! 
– Challenge: # dialects x # impls

Expressive Power

!8



▪Regular languages are limited 
– But DFAs are fast!

▪Hence, feature creep 
– Backreferences 

– Conditionals 

– “Subroutines”, Perl6 grammars 

– Recursion

▪Yet, static analysis needed! 
– Challenge: # dialects x # impls

Expressive Power

!8



Implementation Issues

!9



Implementation Issues

!9 Russ Cox https://swtch.com/~rsc/regexp/regexp1.html

▪Exponential time algorithm is by far 
the most common



Implementation Issues

!9

▪Exponential time algorithm is by far 
the most common

▪Most regex are embedded DSLs 
– Syntax issues (escaping) 

– Type issues 

– Requires scaffolding to write/debug regex 
‣ Less than 17% are tested, most lacking both positive 

& negative tests [Wang, Stolee ESEC/FSE ’18]



Estimates are that less than 0.5%  
of data is ever analyzed. Antonio Regalado 

MIT Technology Review 

Why work on this?

“Every day, we create 2.5 quintillion 
 bytes of data”

IBM1



Estimates are that less than 0.5%  
of data is ever analyzed. Antonio Regalado 

MIT Technology Review 

Why work on this?

“Every day, we create 2.5 quintillion 
 bytes of data”

IBM1

Regex use does not scale (# exps, # people, project lifetime)2



Rosie Pattern Language
“All progress depends on the unreasonable [woman]” 

George Bernard Shaw, paraphrased



Chomsky hierarchy

Formal basis



By J. Finkelstein - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=9405226

Regular 
Expressions  
(strict) 

Chomsky hierarchy

Formal basis



By J. Finkelstein - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=9405226

Rosie 
Pattern 
Language 
(and all PEG 
grammars)

Regular 
Expressions  
(strict) 

Chomsky hierarchy

Formal basis



By J. Finkelstein - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=9405226

Rosie 
Pattern 
Language 
(and all PEG 
grammars)

Regular 
Expressions  
(strict) 

Chomsky hierarchy

Open 
Question: 
PEG > CFG 

Formal basis



RPL syntax: like a programming language



RPL syntax: like a programming language

Comments

Modules

Identifie
rs

Whitespace

Quoted lite
rals

Macro
s 

(not sh
own)

Unit te
sts



RPL syntax: like a programming language

Comments

Modules

Identifie
rs

Whitespace

Quoted lite
rals

Macro
s 

(not sh
own)

Unit te
sts

Readable, maintainable

Diffs like code, not line noise



Semantics

▪Combinators

!14



Semantics

▪Combinators

!14
Matt Might  http://matt.might.net/articles/compiling-up-to-lambda-calculus/



Semantics

▪Combinators

!14
Matt Might  http://matt.might.net/articles/compiling-up-to-lambda-calculus/



Semantics

▪Combinators 
▪Lisp-like macros

!15

Kleene star is possessive, so always fails



Semantics

▪Combinators 
▪Lisp-like macros

!15

Kleene star is possessive, so always fails

 def=

Can write this instead



Semantics

▪Combinators 
▪Lisp-like macros

!15

Kleene star is possessive, so always fails

 def=

Can write this instead

Macros implemented in             … for now. 



Semantics

▪Combinators 
▪Lisp-like macros 
▪ Import mechanism like Go 
▪Prelude like Haskell 
▪Environments like any Lisp-1 
▪Binding rules like Scheme

!16



Semantics

▪Combinators 
▪Lisp-like macros 
▪ Import mechanism like Go 
▪Prelude like Haskell 
▪Environments like any Lisp-1 
▪Binding rules like Scheme

!16



Semantics

▪Combinators 
▪Lisp-like macros 
▪ Import mechanism like Go 
▪Prelude like Haskell 
▪Environments like any Lisp-1 
▪Binding rules like Scheme

!16



Semantics

▪Combinators 
▪Lisp-like macros 
▪ Import mechanism like Go 
▪Prelude like Haskell 
▪Environments like any Lisp-1 
▪Binding rules like Scheme

!16

🙄



Implementation
“I want to believe”                 Fox Mulder, FBI



Can your ‘grep’ do this?

-o     Output format

         subs ==> sub-matches

net.url 
==> package net, pattern url

Named patterns



Customizable 
Output 
highlightingCan your ‘grep’ do this?



Customizable 
Output 
highlightingCan your ‘grep’ do this?



Customizable 
Output 
highlightingCan your ‘grep’ do this?



Customizable 
Output 
highlightingCan your ‘grep’ do this?



Structured 
output optionCan your ‘grep’ do this?



Structured 
output optionCan your ‘grep’ do this?



Structured 
output optionCan your ‘grep’ do this?



Structured 
output optionCan your ‘grep’ do this?



json
color

boolean

RPL 
Compiler

Rosie 
Architecture 

Patterns

Matching Engine



json
color

boolean

RPL 
Compiler

Rosie 
Architecture 

Patterns

Matching Engine



json
color

boolean

RPL 
Compiler

Rosie 
Architecture 

Patterns

Matching Engine

1. RPL source

2. ⇨ Parse tree (Rosie)

3. ⇨ AST

4. Macro expansion

5. Simplification

6. ⇨IR

7. Code generation



Performance
Worse

Better

Grok/ruby

Grok/jruby

Rosie 1.0.0

Notes:

1. Log entry parsing is one narrow use case.

2. Hard to design fair comparisons.

3. Rosie output is nested JSON; Grok output 

is flat lists.

4. Rosie is single-threaded.

Rosie 1.1.0



Debugging
“To err is human, but to really foul things up you 

need a computer.”  

                                                                Paul R. Ehrlich



Trace a (mis-)match



Trace a (mis-)match
Pattern definition

Input text

Matching steps



Read-eval-print loop



Read-eval-print loop

snip

snip

✦ Define patterns

✦ Try them

✦ Debug (trace) them



Read-eval-print loop

snip

snip

✦ Define patterns

✦ Try them

✦ Debug (trace) them



Implementation Roadmap

!28



Implementation Roadmap
✓ librosie as well as CLI, REPL  
✓ Modules (shareable) 
✓ Unit tests 
✓ Output for humans and programs 
✓ Standard library (~300 general, 

~600 Unicode patterns)

!28



Implementation Roadmap
✓ librosie as well as CLI, REPL  
✓ Modules (shareable) 
✓ Unit tests 
✓ Output for humans and programs 
✓ Standard library (~300 general, 

~600 Unicode patterns)

!28

➡ Automated generation from regex



Implementation Roadmap
✓ librosie as well as CLI, REPL  
✓ Modules (shareable) 
✓ Unit tests 
✓ Output for humans and programs 
✓ Standard library (~300 general, 

~600 Unicode patterns)

!28

➡ Automated generation from regex
➡ Ahead of time compilation



Implementation Roadmap
✓ librosie as well as CLI, REPL  
✓ Modules (shareable) 
✓ Unit tests 
✓ Output for humans and programs 
✓ Standard library (~300 general, 

~600 Unicode patterns)

!28

➡ Automated generation from regex
➡ Ahead of time compilation
➡ Formal semantics



Implementation Roadmap
✓ librosie as well as CLI, REPL  
✓ Modules (shareable) 
✓ Unit tests 
✓ Output for humans and programs 
✓ Standard library (~300 general, 

~600 Unicode patterns)

!28

➡ Automated generation from regex
➡ Ahead of time compilation
➡ Formal semantics
➡ Static analysis 
– Worst-case run-time bounds 

– Common errors (linting)



Using Rosie in programs

Today:

Once and future:



Thank you!



Cheaper 
✦ ROI in reduced dev & 

maintenance 
✦ Free open source 

software (MIT license)

Faster 
✦ Dev time:  
✓ library of patterns  
✓ composable patterns 

✦ Run time: 
✓ good match perf.

Better 
✦ Conformance to RFCs 
✦ Readable syntax 
✦ Clear semantics (and no flags) 
✦ Plays well with 

- git/diff 

- package management 

- build automation (unit tests)

On the interwebs: 
@jamietheriveter 

https://rosie-lang.org 
https://gitlab.com/rosie-pattern-language


