/:.}" _‘-.'-

Rethinking (Replacing) Regular
ressions after 50 Years

~~~

@jamietheriveter
https://rosie-lang.org
https://qgitlab.com/rosie-pattern-language



http://twitter.com/jamietheriveter
http://twitter.com/jamietheriveter
http://rosie-lang.org
https://gitlab.com/rosie-pattern-language

NC STATE
UNIVERSITY

Department of
Computer Science


http://www.ibm.com

NC STATE
UNIVERSITY

Department of
Computer Science


http://www.ibm.com

What's wrong with regex?



Syntax



Syntax

= Compact (dense)

- Great for slow terminals!



Syntax

= Compact (dense)

- Great for slow terminals!

https://commons.wikimedia.org/wiki/User:AlisonW



Syntax

= Compact (dense)

- Great for slow terminals!

= Efficient (confusing)
- A symbol can have many meanings!

-EQg. " * = () ?

https://commons.wikimedia.org/wiki/User:AlisonW



Syntax

= Compact (dense)

- Great for slow terminals!

= Efficient (confusing)

- A symbol can have many meanings!
-EQg. " * = () ?

= Write and forget (unmaintainable)
-grep -=v “7#\|["\|"\/\/"

-egrep ‘((\d{1,3})([.-1\d{1,3}){2}]
\w+([.]\w+)+)"’

https://commons.wikimedia.org/wiki/User:AlisonW



Syntaxes

= Compact (dense)

- Great for slow terminals!

= Efficient (confusing)

- A symbol can have many meanings!
-EQg. " * = () ?

= Write and forget (unmaintainable)
-grep -=v “7#\|["\|"\/\/"

-egrep ‘((\d{1,3})([.-1\d{1,3}){2}]
\w+([.]\w+)+)"’

https://commons.wikimedia.org/wiki/User:AlisonW



Semantics



Semantics Chomsky hierarchy

recursively enumerable

= Not that of Regular Languages

context-sensitive

context-free

regular



2017

_-._‘

Languages & Libraries

Boost

Semantics

Delphi

= Not that of Regular Languages

Groovy

» Posix or Perl (or PCRE or js or ...) vaser
EE(C/CH)
PCRE2 (C/C++)
zﬁsmll

Ruby

std::regex
Tcl
VBScript

Visual Basic 6

wxWidgets
XML Schema

Xojo
XQuery & XPath

XRegEXxp

http://www.regular-expressions.info/tools.html




Semantics

= Not that of Regular Languages
= Posix or Perl (or PCRE orjs or ...)

= Variations by implementation
- What does . (dot) match?

- What does \10 mean?



Semantics

Google

regular expression

o All [ Videos

M Books

ab

=) Images

0.60 seconds)

Regular expression - Wikipedia
https://en.wikipedia.org » wiki » Regular_expression ~
A regular expression, regex or regexp is a sequence of characters that

define a search pattern. Usually such patterns are used by string searching

algorithms for ...

News

: More

¢ Q

Settings

Tools




Semantics

= Not that of Regular Languages
= Posix or Perl (or PCRE orjs or ...)

= Variations by implementation
- What does . (dot) match?

- What does \10 mean?

= Depends on flags noft in the expr!



Semantics

re.compile(pattern, flags=0)
Compile a regular expression pattern into a regular expression object, which
can be used for matching using its match(), search() and other methods,

described below.

The expression’s behaviour can be modified by specifying a flags value. Values
can be any of the following variables, combined using bitwise OR (the |

operator).

- What does . (dot) match?

- What does \10 mean?

= Depends on flags noft in the expr!




PCRE:

S e m a nti CS Default Change with

re.compile(pattern, ﬂags=0) . matches newline no PCRE DOTALL
Compile a regular expression pattern into a newline matches ["a] yes not changeable

_ , , $ matches \n at end yes PCRE DOLLARENDONLY
can be used for matching using its match( $ matches \n in middle no PCRE MULTILINE
described below. * matches \n in middle no PCRE MULTILINE

The expression’s behaviour can be modified I This is the equivalent table for POSIX:

can be any of the following variables, con _
Default Change with

operator).
1 . matches newline yes REG NEWLINE
- What does . (dot) match? newline matches [’a] yes REG NEWLINE
$ matches \n at end no REG NEWLINE
- What does \10 mean?”? $ matches \n in middle no REG NEWLINE
" matches \n in middle no REG NEWLINE

= Depends on flags not in th émemepmmm———— —



Semantics

= Not that of Regular Languages
= Posix or Perl (or PCRE orjsor...)

= Variations by implementation
- What does . (dot) match?

- What does \10 mean?
= Depends on flags not in the expr!
= Combining is fraught




Semantics Education works

best when all the parts
are working.

= Not that of Regular Languages
= Posix or Perl (or PCRE orjs or ...)

= Variations by implementation
- What does . (dot) match?

- What does \10 mean?
= Depends on flags noft in the expr!
= Combining is fraught




Semantics

= Not that of Regular Languages
= Posix or Perl (or PCRE orjs or ...)

= Variations by implementation
- What does . (dot) match?

- What does \10 mean?
= Depends on flags noft in the expr!
= Combining is fraught
= No “persistence” (packaging) std



S\\ Stackoverﬂow Products Customers Use cases

The fully RFC 822 compliant regex is inefficient and obscure because

Home of its length. Fortunately, RFC 822 was superseded twice and the
29208 current specification for email addresses is RFC 5322. RFC 5322 leads
PUBLIC to a regex that can be understood if studied for a few minutes and is
© Stack Overflow | efficient enough for actual use.
Tags V One RFC 5322 compliant regex can be found at the top of the page at
http://emailregex.com/ but uses the IP address pattern that is floating
Users +50 around the internet with a bug that allows 0@ for any of the unsigned

byte decimal values in a dot-delimited address, which is illegal. The
rest of it appears to be consistent with the RFC 5322 grammar and
passes several tests using grep -Po , including cases domain names,
TEAMS What'’s this? IP addresses, bad ones, and account names with and without quotes.

[C), First 10 Free

Jobs

Correcting the 00 bug in the IP pattern, we obtain a working and fairly
fast regex. (Scrape the rendered version, not the markdown, for actual
code.)

(2:[a-Z0-9WH$% & +/=21 “{[}~-]+(?:\.[a-Z0-OWHS$% & +/=2A *{[}~-]+)*|"
(?:[\x01-\x08\x0b\x0c\x0e-\x1f\x21\x23-\x5b\x5d-\X7]|\[\x0 1 -
\x09\x0b\x0c\x0e-\x7f])*")@(?:(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\.)+[a-
20-9](?:[a-z0-9-]*[a-z0-9])?\[(?:(?:(2(5[0-5]|[0-4][0-9])|1[0-9][0-9]|[1-
9I?[0-9))\. {3}(?:(2(5[0-5][[0-4][0-9])|1[0-9][0-9]|[1-9]?[0-9])[[a-z0-9-]*
[a-20-9]:(?:[\x01-\x08\x0b\x0c\x0e-\x1A\x21-\x5a\x53-\X7f]|\[\x0 1 -
\x09\x0b\x0c\x0e-\x7f])+)\])

— ——



\
=" stack overflow

Home

PUBLIC

@ Stack Overflow
Tags
Users

Jobs

TEAMS What's this?

[C), First 10 Free

Products

2298

—

Customers Use cases

The fully RFC 822 compliant regex is inefficient and obscure because
of its length. Fortunately, RFC 822 was superseded twice and the
current specification for email addresses is RFC 5322. RFC 5322 leads
to a regex that can be understood if studied for a few minutes and is
efficient enough for actual use.

One RFC 5322 compliant regex can be found at the top of the page at
http://emailregex.com/ but uses the IP address pattern that is floating
around the internet with a bug that allows 0@ for any of the unsigned
byte decimal values in a dot-delimited address, which is illegal. The
rest of it appears to be consistent with the RFC 5322 grammar and
passes several tests using grep -Po , including cases domain names,
IP addresses, bad ones, and account names with and without quotes.

Correcting the 00 bug in the IP pattern, we obtain a working and fairly
fast regex. (Scrape the rendered version, not the markdown, for actual
code.)

20-9] (7 . [a_zo_g_ o
9]?[0-9))\. ){3}(?%,

\xOQ\xOb\xOc\er-\x?f])+)\])




:-". mnordhoff / gist:2213179 % Star 8 YFork 1

Last active 2 months ago « Report gist

<> Code -0~ Revisions 11 Stars 8 . Forks 1 Embed v <script src="https://gi: E& [  Download ZIP

Python regular expressions for IPv4 and IPv6 addresses and URI-references, based on RFC 3986's ABNF.The URI-reference regular
expression includes IPv6 address zone ID support (RFC 6874).

o] gistfilel.py Raw

Python regular expressions for IPv4 and IPv6 addresses and URI-references,
based on RFC 3986's ABNF.

#

#

#

# ipv4_address and ipv6_address are self-explanatory.

# ipv6_addrz requires a zone ID (RFC 6874) follow the IPv6 address. R
# ipv6_address_or_addrz allows an IPv6 address with optional zone ID.

# uri_reference is what you think of as a URI. (It uses ipv6_address_or_addrz.)

import re

ipv4_address = re.compile('~(?:(?:[0-9]1|[1-9]1[0-9]|1[0-9]1{2}|2[0-4][0-9]|25[0-5])\\.){3}(?:[0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4] [0-
ipv6_address = re.compile('~(?:(?:[0-9A-Fa-f1{1,4}:){6}(?: [0-9A-Fa-f1{1,4}: [0-9A-Fa-f]{1,4}|(?:(?:[0-9]|[1-9][0-9] |1[0-9]1{2}|2I
ipv6_addrz = re.compile('~(?:(?:[0-9A-Fa-f1{1,4}:){6}(?: [0-9A-Fa-f]{1,4}: [0-9A-Fa-f]1{1,4}|(?:(?:[0-9] | [1-9] [0-9] |1[0-9]{2}|2[0-
ipv6_address_or_addrz = re.compile('~(?:(?: [0-9A-Fa-f]{1,4}:){6}(?: [0-9A-Fa-f]{1,4}: [0-9A-Fa-f]1{1,4}|(?:(?:[0-9]|[1-9][0-9]|1[0
uri_reference = re.compile("~(?:([A-Za-z] [A-Za-z0-9+\\-.1%x):(?2://((?2:(?2:(?:%[0-9A-Fa-f]{2}| [!$&" ()*+, ;=A-Za-z0-9\\-._~]) |:)*@)?

# len(ipv4_address) == 111

# len(ipv6_address) == 1501

# len(ipv6_addrz) == 1541

# len(ipv6_address_or_addrz) == 1546
# len(uri_reference) == 4445




:-". mnordhoff / gist:2213179 % Star 8 YFork 1

Last active 2 months ago « Report gist

<> Code -0~ Revisions 11 Stars 8 . Forks 1 Embed v <script src="https://gi: E& [  Download ZIP

Python regular expressions for IPv4 and IPv6 addresses and URI-references, based on RFC 3986's ABNF.The URI-reference regular
expression includes IPv6 address zone ID support (RFC 6874).

o] gistfilel.py Raw

Python regular expressions for IPv4 and IPv6 addresses and URI-references,
based on RFC 3986's ABNF.

#

#

#

# ipv4_address and ipv6_address are self-explanatory.

# ipv6_addrz requires a zone ID (RFC 6874) follow the IPv6 address. R
# ipv6_address_or_addrz allows an IPv6 address with optional zone ID.

# uri_reference is what you think of as a URI. (It uses ipv6_address_or_addrz.)

import re

ipv4_address = re.compile('~(?:(?:[0-9]1|[1-9]1[0-9]|1[0-9]1{2}|2[0-4][0-9]|25[0-5])\\.){3}(?:[0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4] [0-
ipv6_address = re.compile('~(?:(?:[0-9A-Fa-f1{1,4}:){6}(?: [0-9A-Fa-f1{1,4}: [0-9A-Fa-f]{1,4}|(?:(?:[0-9]|[1-9][0-9] |1[0-9]1{2}|2I
ipv6_addrz = re.compile('~(?:(?:[0-9A-Fa-f1{1,4}:){6}(?: [0-9A-Fa-f]{1,4}: [0-9A-Fa-f]1{1,4}|(?:(?:[0-9] | [1-9] [0-9] |1[0-9]{2}|2[0-
ipv6_address_or_addrz = re.compile('~(?:(?: [0-9A-Fa-f]{1,4}:){6}(?: [0-9A-Fa-f]{1,4}: [0-9A-Fa-f]1{1,4}|(?:(?:[0-9]|[1-9][0-9]|1[0
uri_reference = re.compile("~(?:([A-Za-z] [A-Za-z0-9+\\-.1%x):(?2://((?2:(?2:(?:%[0-9A-Fa-f]{2}| [!$&" ()*+, ;=A-Za-z0-9\\-._~]) |:)*@)?

# len(ipv4_address) == 111

# len(ipv6_address) == 1501

# len(ipv6_addrz) == 1541

# len(ipv6_address_or_addrz) == 1546
# len(uri_reference) == 4445




F: mnordhoff / gist:2213179 % Star 8 YFork 1

Last active 2 months ago « Report gist

<> Code

Python regular expressions for IPv4 and IPv6 addresses and URI-referki.
expression includes IPv6 address zone ID support (RFC 6874).

<

v

gistfilel.py

Revisions 11

Stars 8 Forks 1

eAhttps://gi: & [  Download ZIP

»AThe URI-reference regular

Raw

Python regular expressions for IPv4 and IPv6 addresses and URI-referehee?, ¢

based on RFC 3986's ABNF.

ipv6_addrz requires a zone ID (RFC 6874) follow the IPv6 address. R
ipv6_address_or_addrz allows an IPv6 address with optional zone ID.

#
#
#
# ipv4_address and ipv6_address are self-explanatory.
#
#
#

uri_reference is what you think of as a URI. (It uses ipv6_address_or_addrz.)

import re

ipv4_address
ipv6_address
ipv6_addrz =

re.compile('~(?:(?:[0-9]|[1-9] [0-9] |1[0-9]{2}|2[0-4] [0-9] |25[0-5])\\.){3}(?:[0-9] | [1-9] [0-9] |1[0-9]{2}|2[0-4] [0-
re.compile('~(?:(?: [0-9A-Fa-f1{1,4}:){6}(?: [0-9A-Fa-f1{1,4}: [0-9A-Fa-f1{1,4}|(?:(?:[0-9] | [1-9][0-9] |1[0-9]1{2}|2I
re.compile('~(?:(?: [0-9A-Fa-f1{1,4}:){6}(?: [0-9A-Fa-f1{1,4}: [0-9A-Fa-f1{1,4}|(?:(?:[0-9] | [1-9] [0-9] |1[0-9]1{2}|2[0-

ipv6_address_or_addrz
re.compile("~(?:([A-Za-z] [A-Za-z0-9+\\-.1%): (?2://((?2:(?: (?2:%[0-9A-Fa-f1{2}| [!$&" ()*+, ;=A-Za-z0-9\\-._~]) | : )*@) ?

uri_reference

# len(ipv4_address) ==

# len(ipv6_address) ==
# len(ipv6_addrz) == 1541

# len(ipv6_address_or_addrz) == 1546
# len(uri_reference) == 4445

re.compile('~(?:(?: [0-9A-Fa-f]1{1,4}:){6}(?: [0-9A-Fa-f1{1,4}: [0-9A-Fa-f]1{1,4}|(?:(?:[0-9]|[1-9] [0-9] |1[0

111
1501




EXpressive Power



EXpressive Power

= Regular languages are limited
- But DFAs are fast!



You can't parse [X]HTML with regex. Because HTML can't be parsed by regex. Regex is not a tool
. that can be used to correctly parse HTML. As | have answered in HTML-and-regex questions here
EX p re S S I Ve P OW 4420 SO many times before, the use of regex will not allow you to consume HTML. Regular expressions
are a tool that is insufficiently sophisticated to understand the constructs employed by HTML. HTML
Is not a regular language and hence cannot be parsed by regular expressions. Regex queries are
not equipped to break down HTML into its meaningful parts. so many times but it is not getting to
V me. Even enhanced irregular regular expressions as used by Perl are not up to the task of parsing
HTML. You will never make me crack. HTML is a language of sufficient complexity that it cannot be
parsed by regular expressions. Even Jon Skeet cannot parse HTML using regular expressions.
- Reg u Ia r Ia n g u ag eS a re Every time you attempt to parse HTML with regular expressions, the unholy child weeps the blood
of virgins, and Russian hackers pwn your webapp. Parsing HTML with regex summons tainted souls
- But DFAs are fast! into the realm of the living. HTML and regex go together like love, marriage, and ritual infanticide.
The <center> cannot hold it is too late. The force of regex and HTML together in the same
conceptual space will destroy your mind like so much watery putty. If you parse HTML with regex
you are giving in to Them and their blasphemous ways which doom us all to inhuman toil for the
One whose Name cannot be expressed in the Basic Multilingual Plane, he comes. HTML-plus-
regexp will liquify the nerves of the sentient whilst you observe, your psyche withering in the
onslaught of horror. Reg'e'x-based HTML parsers are the cancer that is killing StackOverflow it is too
late it is too late we cannot be saved the trangession of a child ensures regex will consume all living
tissue (except for HTML which it cannot, as previously prophesied) dear lord help us how can
anyone survive this scourge using regex to parse HTML has doomed humanity to an eternity of
dread torture and security holes using regex as a tool to process HTML establishes a breach
between this world and the dread realm of ¢orrupt entities (like SGML entities, but more corrupt) a
mere glimpse of the world of regex parsers for HTML will instantly transport a programmer's
consciousness into a world of ceaseless screaming, he comes;thepestilentslithy regex-infection
will devour your HTML parser, application and existence for all time like Visual:Basic only worse he
comes he comes do not fight he comss, his unholy radiancé destroying all enlightenment, HTML
tags leakjng from Jyour eyes’ﬁke liquid pain, the song of regular expreesieﬂ—paFeing—will extinguish
the voices of mortal man from the spheye | can see it can you see jt lt it is beautiful the f inal
snuf fing of the lies of Man ALL IS LOSTZALL IS LOST the pony fe comes he eom%he—ee’:haes

t@e..lchor permeates all MY FACE MV,H\C?Q_;Q god no NO NOOOO NO stop the an-g!‘ s ,are not
résl ZALGO I$ TONg THE PONY, I-Eséomee =

—

Author: bobince https://stackoverflow.com/questions/1732348/regex-match-open-tags-except-xhtml-self-contained-tags




EXpressive Power

- Regular |anguages are limited THE ART OF PRODUCT MANAGEMENT
- But DFAs are fast! |
- faat ' LETS SEE HOW MANY MORE
" Flence, Teature creep e | FEATURES WE CAN (RAM IN
- Backreferences & Sorcc
- Conditionals

- "Subroutines”, Perl6 grammars

- Recursion

® marketoonist.com



EXpressive Power

= Reqgular languages are limited
- But DFAs are fast!

= Hence, feature creep

- Backreferences
- Conditionals
- “Subroutines”, Perlo grammars

- Recursion

= Yet, static analysis needed!

- Challenge: # dialects x # impls

THE ART OF PRODUCT MANAGEMENT

LETS SEE HOW MANY MORE
FEATURES WE CAN (RAM IN

® marketoonist.com



EXpressive Power

= Reqgular languages are limited
- But DFAs are fast!

= Hence, feature creep

- Backreferences

- Conditionals
- “Subroutines”, Perlo grammars

- Recursion

= Yet, static analysis needed!

- Challenge: # dialects x # impls




Implementation Issues



Implementation Issues

= Exponential time algorithm is by far
the most common

60 — Perl 5.8.7
| 60 —
w Z 404
g 2 ]
£ | Thompson NFA
= = 20 pso
0

0 10 20 30

Time to match a?"a" against a"

s://swtch.com/~rsc/regexp/regexpl.html




Issues

10N

Implementat

ithm is by far

lal time algor

= EXponent

the most common

gy watamald

A

o wtPR

= Most regex are embedded DSLs

L NS

. ..0...4‘v~‘100. v
‘e edvEve ol
L e T

>

(escaping)

ISSUes

Syntax
- Type issues

o
R T
:.n“. .

UIsriree

- Requires scaffolding to write/debug regex

» Less than 17% are tested, most lacking both positive

00’
S
LL
7))
LL
~~
O
LL
)
LL
O
Q
O
e
7))
)
C
=
9p)
e
7p)
)
e
)
P
e
©
(@)
)
C
o




Why work on this?

IBM

@ “Every day, we create 2.5 quintillion
bytes of data”

Data AVAILABLE to
an organization

jesed
o‘;\go‘“‘m‘w

v

Data an organization
can PROCESS

Estimates are that less than 0.5% N
. ntonio Regalado
of data is ever analyzed. MIT Technoloay Review



Why work on this?

@ “Every day, we create 2.5 quintillion B
bytes of data”
Data AVAILABLE to
an organization
‘;\g?::ﬂw
B Data an organization
can PROCESS
Estimates are that less than 0.5% N
. ntonio Regalado
of data is ever analyzed. MIT Technoloav Review

@ Regex use does not scale (# exps, # people, project lifetime)



Rosle Patte

"All progress depends on the unree
George Berne



Formal basis

Chomsky hierarch

recursively enumerable

context-sensitive

context-free

regular

Parsing Expression Grammars:
A Recognition-Based Syntactic Foundation

Bryan Ford
Massachusetts Institute of Technology
Cambridge, MA

baford @ mit.edu

Abstract

For decades we have been using Chomsky’s generative system of
grammars, particularly context-free grammars (CFGs) and regu-
lar expressions (REs), to express the syntax of programming lan-
guages and protocols. The power of generative grammars to ex-
press ambiguity is crucial to their original purpose of modelling
natural languages, but this very power makes it unnecessarily diffi-
cult both to express and to parse machine-oriented languages using
CFGs. Parsing Expression Grammars (PEGs) provide an alterna-
tive, recognition-based formal foundation for describing machine-
oriented syntax, which solves the ambiguity problem by not intro-
ducing ambiguity in the first place. Where CFGs express nondeter-
ministic choice between alternatives, PEGs instead use prioritized
choice. PEGs address frequently felt expressiveness limitations of
CFGs and REs, simplifying syntax definitions and making it un-
necessary to separate their lexical and hierarchical components. A
linear-time parser can be built for any PEG, avoiding both the com-
plexity and fickleness of LR parsers and the inefficiency of gener-
alized CFG parsing. While PEGs provide a rich set of operators for
constructing grammars, they are reducible to two minimal recogni-

1 Introduction

Most language syntax theory and practice is based on generative
systems, such as regular expressions and context-free grammars, in
which a language is defined formally by a set of rules applied re-
cursively to generate strings of the language. A recognition-based
system, in contrast, defines a language in terms of rules or predi-
cates that decide whether or not a given string is in the language.
Simple languages can be expressed easily in either paradigm. For
example, {s € a* | s = (aa)"} is a generative definition of a trivial
language over a unary character set, whose strings are “constructed”
by concatenating pairs of a’s. In contrast, {s € a* | (|s| mod 2=0)}
is a recognition-based definition of the same language, in which a
string of a’s is “accepted” if its length is even.

While most language theory adopts the generative paradigm, most
practical language applications in computer science involve the
recognition and structural decomposition, or parsing, of strings.
Bridging the gap from generative definitions to practical recogniz-
ers is the purpose of our ever-expanding library of parsing algo-
rithms with diverse capabilities and trade-offs [9].

tion schemas developed around 1970, TS/TDPL and gTS/GTDPL,
which are here proven equivalent in effective recognition power. Chomsky’s generative system of grammars, from which the ubiqui-

A Text Pattern-Matching
Tool based on Parsing
Expression Grammars

Roberto Ierusalimschy!

' PUC-Rio, Brazil

This is a preprint of an article accepted for publication in Software: Practice and Experience;
Copyright 2008 by John Willey and Sons.

SUMMARY

Current text pattern-matching tools are based on regular expressions. However, pure regular
expressions have proven too weak a formalism for the task: many interesting patterns either are
difficult to describe or cannot be described by regular expressions. Moreover, the inherent non-
determinism of regular expressions does not fit the need to capture specific parts of a match.

Motivated by these reasons, most scripting languages nowadays use pattern-matching tools that
extend the original regular-expression formalism with a set of ad-hoc features, such as greedy
repetitions, lazy repetitions, possessive repetitions, “longest match rule”, lookahead, etc. These
ad-hoc extensions bring their own set of problems, such as lack of a formal foundation and complex
implementations.

In this paper, we propose the use of Parsing Expression Grammars (PEGs) as a basis for pattern
matching. Following this proposal, we present LPEG, a pattern-matching tool based on PEGs for
the Lua scripting language. LPEG unifies the ease of use of pattern-matching tools with the full
expressive power of PEGs. Because of this expressive power, it can avoid the myriad of ad-hoc
constructions present in several current pattern-matching tools. We also present a Parsing Machine
that allows a small and efficient implementation of PEGs for pattern matching.

KEY WORDS: pattern matching, Parsing Expression Grammars, scripting languages




Formal basis

Chomsky hierarch

recursively enumerable
context-sensitive

context-free

= e — .
o — —
~o & =

o

regular

By J. Finkelstein - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=9405226

Parsing Expression Grammars:
A Recognition-Based Syntactic Foundation

Bryan Ford
Massachusetts Institute of Technology
Cambridge, MA

baford@ mit.edu

Abstract

For decades we have been using Chomsky’s generative system of
grammars, particularly context-free grammars (CFGs) and regu-
lar expressions (REs), to express the syntax of programming lan-
guages and protocols. The power of generative grammars to ex-
press ambiguity is crucial to their original purpose of modelling
natural languages, but this very power makes it unnecessarily diffi-
cult both to express and to parse machine-oriented languages using
CFGs. Parsing Expression Grammars (PEGs) provide an alterna-
tive, recognition-based formal foundation for describing machine-
oriented syntax, which solves the ambiguity problem by not intro-
ducing ambiguity in the first place. Where CFGs express nondeter-
ministic choice between alternatives, PEGs instead use prioritized
choice. PEGs address frequently felt expressiveness limitations of
CFGs and REs, simplifying syntax definitions and making it un-
necessary to separate their lexical and hierarchical components. A
linear-time parser can be built for any PEG, avoiding both the com-
plexity and fickleness of LR parsers and the inefficiency of gener-
alized CFG parsing. While PEGs provide a rich set of operators for
constructing grammars, they are reducible to two minimal recogni-

1 Introduction

Most language syntax theory and practice is based on generative
systems, such as regular expressions and context-free grammars, in
which a language is defined formally by a set of rules applied re-
cursively to generate strings of the language. A recognition-based
system, in contrast, defines a language in terms of rules or predi-
cates that decide whether or not a given string is in the language.
Simple languages can be expressed easily in either paradigm. For
example, {s € a* | s = (aa)"} is a generative definition of a trivial
language over a unary character set, whose strings are “constructed”
by concatenating pairs of a’s. In contrast, {s € a* | (|s| mod 2=0)}
is a recognition-based definition of the same language, in which a
string of a’s is “accepted” if its length is even.

While most language theory adopts the generative paradigm, most
practical language applications in computer science involve the
recognition and structural decomposition, or parsing, of strings.
Bridging the gap from generative definitions to practical recogniz-
ers is the purpose of our ever-expanding library of parsing algo-
rithms with diverse capabilities and trade-offs [9].

tion schemas developed around 1970, TS/TDPL and gTS/GTDPL,
which are here proven equivalent in effective recognition power. Chomsky’s generative system of grammars, from which the ubiqui-

A Text Pattern-Matching
Tool based on Parsing
Expression Grammars

Roberto Ierusalimschy!

' PUC-Rio, Brazil

This is a preprint of an article accepted for publication in Software: Practice and Experience;
Copyright 2008 by John Willey and Sons.

SUMMARY

Current text pattern-matching tools are based on regular expressions. However, pure regular
expressions have proven too weak a formalism for the task: many interesting patterns either are
difficult to describe or cannot be described by regular expressions. Moreover, the inherent non-
determinism of regular expressions does not fit the need to capture specific parts of a match.

Motivated by these reasons, most scripting languages nowadays use pattern-matching tools that
extend the original regular-expression formalism with a set of ad-hoc features, such as greedy
repetitions, lazy repetitions, possessive repetitions, “longest match rule”, lookahead, etc. These
ad-hoc extensions bring their own set of problems, such as lack of a formal foundation and complex
implementations.

In this paper, we propose the use of Parsing Expression Grammars (PEGs) as a basis for pattern
matching. Following this proposal, we present LPEG, a pattern-matching tool based on PEGs for
the Lua scripting language. LPEG unifies the ease of use of pattern-matching tools with the full
expressive power of PEGs. Because of this expressive power, it can avoid the myriad of ad-hoc
constructions present in several current pattern-matching tools. We also present a Parsing Machine
that allows a small and efficient implementation of PEGs for pattern matching.

KEY WORDS: pattern matching, Parsing Expression Grammars, scripting languages




Formal basis

Chomsky hierarch

recursively enumerable

PDESEREY, T V2 T AR - AN
X e . AR,

gdntext-se

-

e » "W
BARS,

nsi

context-free

= e — .
Iy —
~o & - -

.- -

By J. Finkelstein - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=9405226

Rosie
Pattern
Language
and all PEG
grammars

Parsing Expression Grammars:
A Recognition-Based Syntactic Foundation

Bryan Ford

Massachusetts Institute of Technology
Cambridge, MA

baford @ mit.edu

Abstract

For decades we have been using Chomsky’s generative system of
grammars, particularly context-free grammars (CFGs) and regu-
lar expressions (REs), to express the syntax of programming lan-
guages and protocols. The power of generative grammars to ex-
press ambiguity is crucial to their original purpose of modelling
natural languages, but this very power makes it unnecessarily diffi-
cult both to express and to parse machine-oriented languages using
CFGs. Parsing Expression Grammars (PEGs) provide an alterna-
tive, recognition-based formal foundation for describing machine-
oriented syntax, which solves the ambiguity problem by not intro-
ducing ambiguity in the first place. Where CFGs express nondeter-
ministic choice between alternatives, PEGs instead use prioritized
choice. PEGs address frequently felt expressiveness limitations of
CFGs and REs, simplifying syntax definitions and making it un-
necessary to separate their lexical and hierarchical components. A
linear-time parser can be built for any PEG, avoiding both the com-
plexity and fickleness of LR parsers and the inefficiency of gener-
alized CFG parsing. While PEGs provide a rich set of operators for
constructing grammars, they are reducible to two minimal recogni-

1 Introduction

Most language syntax theory and practice is based on generative
systems, such as regular expressions and context-free grammars, in
which a language is defined formally by a set of rules applied re-
cursively to generate strings of the language. A recognition-based
system, in contrast, defines a language in terms of rules or predi-
cates that decide whether or not a given string is in the language.
Simple languages can be expressed easily in either paradigm. For
example, {s € a* | s = (aa)"} is a generative definition of a trivial
language over a unary character set, whose strings are “constructed”
by concatenating pairs of a’s. In contrast, {s € a* | (|s| mod 2=0)}
is a recognition-based definition of the same language, in which a
string of a’s is “accepted” if its length is even.

While most language theory adopts the generative paradigm, most
practical language applications in computer science involve the
recognition and structural decomposition, or parsing, of strings.
Bridging the gap from generative definitions to practical recogniz-
ers is the purpose of our ever-expanding library of parsing algo-
rithms with diverse capabilities and trade-offs [9].

tion schemas developed around 1970, TS/TDPL and gTS/GTDPL,
which are here proven equivalent in effective recognition power. Chomsky’s generative system of grammars, from which the ubiqui-

A Text Pattern-Matching
Tool based on Parsing
Expression Grammars

Roberto Ierusalimschy!

' PUC-Rio, Brazil

This is a preprint of an article accepted for publication in Software: Practice and Experience;
Copyright 2008 by John Willey and Sons.

SUMMARY

Current text pattern-matching tools are based on regular expressions. However, pure regular
expressions have proven too weak a formalism for the task: many interesting patterns either are
difficult to describe or cannot be described by regular expressions. Moreover, the inherent non-
determinism of regular expressions does not fit the need to capture specific parts of a match.

Motivated by these reasons, most scripting languages nowadays use pattern-matching tools that
extend the original regular-expression formalism with a set of ad-hoc features, such as greedy
repetitions, lazy repetitions, possessive repetitions, “longest match rule”, lookahead, etc. These
ad-hoc extensions bring their own set of problems, such as lack of a formal foundation and complex
implementations.

In this paper, we propose the use of Parsing Expression Grammars (PEGs) as a basis for pattern
matching. Following this proposal, we present LPEG, a pattern-matching tool based on PEGs for
the Lua scripting language. LPEG unifies the ease of use of pattern-matching tools with the full
expressive power of PEGs. Because of this expressive power, it can avoid the myriad of ad-hoc
constructions present in several current pattern-matching tools. We also present a Parsing Machine
that allows a small and efficient implementation of PEGs for pattern matching.

KEY WORDS: pattern matching, Parsing Expression Grammars, scripting languages




Formal basis

Chomsky hierarch

2 ,._A.
L v A TR X5 rp = g
Y- N pyr N - ,,".'~ "

gdntext-se

e » "W
BARS,

context-free

= e — .
Iy —
~o & - -

.- -

By J. Finkelstein - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=9405226

Rosie
Pattern
Language
and all PEG
grammars

Parsing Expression Grammars:
A Recognition-Based Syntactic Foundation

Bryan Ford

Massachusetts Institute of Technology
Cambridge, MA

baford @ mit.edu

Abstract

For decades we have been using Chomsky’s generative system of
grammars, particularly context-free grammars (CFGs) and regu-
lar expressions (REs), to express the syntax of programming lan-
guages and protocols. The power of generative grammars to ex-
press ambiguity is crucial to their original purpose of modelling
natural languages, but this very power makes it unnecessarily diffi-
cult both to express and to parse machine-oriented languages using
CFGs. Parsing Expression Grammars (PEGs) provide an alterna-
tive, recognition-based formal foundation for describing machine-
oriented syntax, which solves the ambiguity problem by not intro-
ducing ambiguity in the first place. Where CFGs express nondeter-
ministic choice between alternatives, PEGs instead use prioritized
choice. PEGs address frequently felt expressiveness limitations of
CFGs and REs, simplifying syntax definitions and making it un-
necessary to separate their lexical and hierarchical components. A
linear-time parser can be built for any PEG, avoiding both the com-
plexity and fickleness of LR parsers and the inefficiency of gener-
alized CFG parsing. While PEGs provide a rich set of operators for
constructing grammars, they are reducible to two minimal recogni-

1 Introduction

Most language syntax theory and practice is based on generative
systems, such as regular expressions and context-free grammars, in
which a language is defined formally by a set of rules applied re-
cursively to generate strings of the language. A recognition-based
system, in contrast, defines a language in terms of rules or predi-
cates that decide whether or not a given string is in the language.
Simple languages can be expressed easily in either paradigm. For
example, {s € a* | s = (aa)"} is a generative definition of a trivial
language over a unary character set, whose strings are “constructed”
by concatenating pairs of a’s. In contrast, {s € a* | (|s| mod 2=0)}
is a recognition-based definition of the same language, in which a
string of a’s is “accepted” if its length is even.

While most language theory adopts the generative paradigm, most
practical language applications in computer science involve the
recognition and structural decomposition, or parsing, of strings.
Bridging the gap from generative definitions to practical recogniz-
ers is the purpose of our ever-expanding library of parsing algo-
rithms with diverse capabilities and trade-offs [9].

tion schemas developed around 1970, TS/TDPL and gTS/GTDPL,
which are here proven equivalent in effective recognition power. Chomsky’s generative system of grammars, from which the ubiqui-

A Text Pattern-Matching
Tool based on Parsing
Expression Grammars

Roberto Ierusalimschy!

' PUC-Rio, Brazil

This is a preprint of an article accepted for publication in Software: Practice and Experience;
Copyright 2008 by John Willey and Sons.

SUMMARY

Current text pattern-matching tools are based on regular expressions. However, pure regular
expressions have proven too weak a formalism for the task: many interesting patterns either are
difficult to describe or cannot be described by regular expressions. Moreover, the inherent non-
determinism of regular expressions does not fit the need to capture specific parts of a match.

Motivated by these reasons, most scripting languages nowadays use pattern-matching tools that
extend the original regular-expression formalism with a set of ad-hoc features, such as greedy
repetitions, lazy repetitions, possessive repetitions, “longest match rule”, lookahead, etc. These
ad-hoc extensions bring their own set of problems, such as lack of a formal foundation and complex
implementations.

In this paper, we propose the use of Parsing Expression Grammars (PEGs) as a basis for pattern
matching. Following this proposal, we present LPEG, a pattern-matching tool based on PEGs for
the Lua scripting language. LPEG unifies the ease of use of pattern-matching tools with the full
expressive power of PEGs. Because of this expressive power, it can avoid the myriad of ad-hoc
constructions present in several current pattern-matching tools. We also present a Parsing Machine
that allows a small and efficient implementation of PEGs for pattern matching.

KEY WORDS: pattern matching, Parsing Expression Grammars, scripting languages




RPL syntax: like a pr

———— —%— Mode: r

——== json.rpl rol patterns for processing json input

———— © Copyright IBM Corporation 2016, 2017.

ogramming language

———— LICENSE: MIT License (https://opensource.org/licenses/mit-license.html)

———— AUTHOR: Jamie A. Jennings
package json

import word, num

local key = word.dq

local string = word.dq
local number num.signed_number

local true = "true"
local false = "false"
local null = "null"

grammar
value = ~ string / number / object / array / true / false / null
member = key ":" value
object = "{" (member ("," member)x)? "}"
array = "[" (value ("," value)x)? "]"
end
—— test value accepts "true", "false", "null"
—-— test value rejects "ture", "f", "NULL"
-— test value accepts "o", "123", "-1", "1.1001", "1.2el10", "1l.2e-10", "+3.3"
—— test value accepts "\"hello\"", "\"this string has \\\"embedded\\\" double quotes\""
—-— test value rejects "hello", "\"this string has no \\\"final quotel\\\" "
-— test value rejects "--2", "9.1.", "9.1.2", "++2", "2E02."
—— test value accepts "I[]", "I[1, 2, 3.14, \"V\", 6.02e23, truel", (7], [[8]]]"
—— test value rejects (11", "I[", "[[]"™, "{1, 2}"

—— test value accepts "{\"one\":1}", "{ \"one\" :1}",

—— test value accepts "{\"one\":1, \"two\": 2}",

II{ \Ilone\ll
n{\none\n:l’
—— test value accepts "[{\"v\":1}, {\"v\":2}, {\"v\":3}]"

\”tWO\“:

\"array\":[1,2]}"



RPL syntax: like a pr

—%— Mode: r

json.rpl

package json

import word, num

© Copyright IBM Corporation 2016, 2017.
LICENSE: MIT License (https://opensource.org/licenses/mit-license.html)
AUTHOR: Jamie A. Jennings

local key = word.dq
local string = word.dqg
local number = num.signed_number
local true = "true"
local false = "false"
local null = "null"®
grammar
value = ~ string / number / object / array / true / false / null
member = key ":" value
object = "{" (member ("," member)x)? "}"
array = "[" (value ("," value)x)? "]"
end
-— test value accepts "true", "false", "null"
—-— test value rejects "ture", "f", "NULL"
-— test value accepts "o", "123", "-1", "1.1001", "1.2el10", "1.2e-10", "+3.3"
-— test value accepts "\"hello\"", "\"this string has \\\"embedded\\\" double quotes\""
—— test value rejects "hello"”, "\"this string has no \\\"final quote\\\" "
-— test value rejects "--2", "9.1.", "9.1.2", "++2", "2E02."
—— test value accepts "I[]", "I[1, 2, 3.14, \"V\", 6.02e23, truel", "I[1, 2, [7],
—— test value rejects (11", "I[", "[[]"™, "{1, 2}"
—— test value accepts "{\"one\":1}", "{ \"one\" :1}", "{ \"one\" : 1 }"
-— test value accepts "{\"one\":1, \"two\": 2}", "{\"one\":1, \"two\": 2, \"array\":[1,2]}"
—— test value accepts "[{\"v\":1}, {\"v\":2}, {\"v\":3}]"

rol patterns for processing json input

ogramming language

[[8]]]"



———— —%- Mode: r

RPL syntax: like a programming language

~<§7 -——— json.rpl rpl patterns for processing json input "
<:\ ———— © Copyright IBM Corporation 2016, -

<§SS§\ ———— LICENSE: MIT License (https://opgynn~“"ww

——== AUTHOR: Jamie A. Jennings .-

\QED package json
AV
O

import word, num %

P 6\9 local key = word.d} =" -
\§\ local string = worddq "
Q local number = num_siy i

(j2> local true = "true"kh
{b‘ local false = "false}

QSS? local null = "null"
(b\% grammar

value = ~ string / number / object / array / true / false / null

‘\Q‘ member = key ":" value

\Q\ object = "{" (member ("," member)x)? "}"
6 array = "[" (value ("," value)x)? "]"
’\gb (52, end
N M
<:>_ ¢2> éSQ -— test value accepts "true", "false”, "null"”
‘§S§\ S -— test value rejects "ture", "f", "NULL"
& -— test value accepts "o0", "123", "-1", "1.1001", "1.2el10", "1.2e-10", "+3.3"
\<§) —— test value accepts "\"hello\"", "\"this string has \\\"embedded\\\" double quotes\""
Qb —-— test value rejects "hello", "\"this string has no \\\"final quotel\\\" "
XQ?D -— test value rejects "--2", "9.1.", "9.1.2", "++2", "2E02."
\°
\:S(\‘ -— test value accepts "I[]", "I[1, 2, 3.14, \"V\", 6.02e23, truel", "I[1, 2, [7], [I[8]]]"
—— test value rejects (11", "I[", "[[]"™, "{1, 2}"

—— test value accepts "{\"one\":1}", "{ \"one\" :1}", "{ \"one\" : 1 }"
—— test value accepts "{\"one\":1, \"two\": 2}", "{\"one\":1, \"two\": 2, \"array\":[1,2]}"
—— test value accepts "[{\"v\":1}, {\"v\":2}, {\"v\":3}]"



14

Semantics

= Combinators



14

Semantics

= Combinators

Matt Might http://matt.might.net/articles/compiling-u

-to-lambda-calculus/




14

Semantics

= Combinators

Matt Might http://matt.might.net/articles/compiling-up-to-lambda-calculus/




15

Semantics

= Combinators
= Lisp-like macros

Kleene star Is possessive, SO

Sk V'Y | always fails

{ ! IIXII ] }* IIXII




15

Semantics

= Combinators
= Lisp-like macros

Kleene star is possessive, so | .,k ""X"' | always fails

find:"x" & {1"x" L px X"

N

Can write this instead



15

Semantics

= Combinators
= Lisp-like macros

Kleene star is possessive, so | .,k ""X"' | always fails

find:"x" & Ly 3k i

\

Can write this instead

P
Macros implemented in @ ! ... for now.



16

Semantics

= Combinators

= LiIsp-like macros

= Import mechanism like Go

= Prelude like Haskell

= Environments like any Lisp-1
= Binding rules like Scheme



16

Semantics

« Combinators ah

= LiIsp-like macros

= Import mechanism like Go

= Prelude like Haskell

= Environments like any Lisp-1
= Binding rules like Scheme



16

Semantics

« Combinators a'—

= LiIsp-like macros

= Import mechanism like Go
= Prelude like Haskell

= Environments like any Lisp-1 &

= Binding rules like Scheme

T

h

s
fil}' )
muul"luﬂ

P

h

Rl

h

["H"Hml” ‘
¢’
o

—

I —

—_
=
=
=
=
=
=
=

—_—

=
L4

= m—
= & =
— L a9
-_— —_ =
= - ='E
= i

= - =
| S )

P —
& =
= ==
= = e
= BFe
& - =
e




16

Semantics

« Combinators a'—

. Lisp-like macros Q9
= Import mechanism like Go
= Prelude like Haskell

= Environments like any Lisp-1 &

= Binding rules like Scheme

T

h

s
fil}' )
muul"luﬂ

P

h

Rl

h

["H"Hml” ‘
¢’
o

—

I —

—_
=
=
=
=
=
=
=

—_—

=
L4

= m—
= & =
— L a9
-_— —_ =
= - ='E
= i

= - =
| S )

P —
& =
= ==
= = e
= BFe
& - =
e




Implemel

‘| want to believe”




Can your ‘grep’ do this?

Q NAMED PATTERNS

$ curl -s www.google.com | rosie grep -o subs net.url
http://schema.org/WebPage
http://www.google.com/imghp?hl=en&tab=wi
http://maps.google.com/maps?hl=en&tab=wl
https://play.google.com/?hl=en&tab=w8
http://www.youtube.com/?gl=US&tab=wl
http://news.google.com/nwshp?hl=en&tab=wn
https://mail.google.com/mail/?tab=wm
https://drive.google.com/?tab=wo
https://www.google.com/intl/en/options/
http://www.google.com/history/optout?hl=en
https://accounts.google.com/ServicelLogin?hl=en&passive=true&continue=http://www.google.com/
https://plus.google.com/116899029375914044550

$

-0 Output format
subs ==> sub-matches

net.url
==> package net, pattern url



CUSTOMIZABLE
OUTPUT

HIGHLIGHTING

Can your ‘grep’ do this?

$ rosie match 'word.any (net.any)+' resolv.conf
abc.aus.examp le.com

1bm.com mylocaldomain.myisp.net example.com
192.9.201.1

192.9.201.2
de9:4789:96dd:03bd: :1




CUSTOMIZABLE
OUTPUT

HIGHLIGHTING

Can your ‘grep’ do this?

$ rosie match 'word.any (net.any)+' resolv.conf
abc.aus.examp le.com

1bm.com mylocaldomain.myisp.net example.com
192.9.201.1
192.9.201.2
1de9:4789:96dd:03bd::1

$ rosie ——colors='net.1ipv4=blue;bold’' match 'word.any (net.any)+' resolv.conf
domain abc.aus.example.com

search 1ibm.com mylocaldomain.myisp.net example.com

nameserver 192.9.201.1

nameserver 192.9.201.2

nameserver tde9:4789:96dd:03bd::1

$



CUSTOMIZABLE
OUTPUT
HIGHLIGHTING

Can your ‘grep’ do this?

$ sed -n 46,49p /var/log/system.log

Jul 30 10:18:42 Jamies—Compabler com.apple.xpc.launchd[1l] (com.apple.CoreSimulator.CoreSimulatorService
[669]): Service exited due to signal: Killed: 9 sent by com.apple.CoreSimulator.CoreSimu[669]

Jul 30 10:18:42 Jamies—-Compabler systemstats[71]: assertion failed: 17G65: systemstats + 914800 [D1E75C
38-62CE-3D77-9ED3-5F6D38EF0676] : 0x40

Jul 30 10:18:43 Jamies—-Compabler ContainerMetadataExtractor[92065]: objc[92065]: Class BRMangledID is i
mplemented in both /System/Library/PrivateFrameworks/CloudDocs.framework/Versions/A/CloudDocs (@x7fff8b
848c88) and /System/Library/PrivateFrameworks/CloudDocsDaemon. framework/XPCServices/ContainerMetadataEx
tractor.xpc/Contents/Mac0S/ContainerMetadataExtractor (0x10a8e0528). One of the two will be used. Which
one 1is undefined.

Jul 30 10:18:50 Jamies-Compabler systemstats[71]: assertion failed: 17G65: systemstats + 914800 [D1E75C
38-62CE-3D77-9ED3-5F6D38EF0676] : 0x40




CUSTOMIZABLE
OUTPUT
HIGHLIGHTING

Can your ‘grep’ do this?

$ sed -n 46,49p /var/log/system.log
Jul 30 10:18:42 Jamies-Compabler com.apple.xpc.launchd[1l] (com.apple.CoreSimulator.CoreSimulatorService
[669]): Service exited due to signal: Killed: 9 sent by com.apple.CoreSimulator.CoreSimu([669]

Jul 30 10:18:42 Jamies—-Compabler systemstats[71]: assertion failed: 17G65: systemstats + 914800 [D1E75C
38-62CE-3D77-9ED3-5F6D38EF0676] : 0x40

Jul 30 10:18:43 Jamies-Compabler ContainerMetadataExtractor[92065]: objc[92065]: Class BRMangledID is i
mplemented in both /System/Library/PrivateFrameworks/CloudDocs.framework/Versions/A/CloudDocs (@x7fff8b
848c88) and /System/Library/PrivateFrameworks/CloudDocsDaemon. framework/XPCServices/ContainerMetadataEx
tractor.xpc/Contents/Mac0S/ContainerMetadataExtractor (0x10a8e0528). One of the two will be used. Which
one 1is undefined.

Jul 30 10:18:50 Jamies—Compabler systemstats[71]: assertion failed: 17
38-62CE-3D77-9ED3-5F6D38EF0676] : 0x40

temstats + 914800 [D1E75C

$

$ sed -n 46,49p /var/log/system.log | [rosie match all.things

Jul 30 10:18:42 - com.apple.xpc. launchd[1l] (com.apple.CoreSimulator.CoreSimulatorService

[669]): : : 9 com.apple.CoreSimulator.CoreSimu[669]

Jul 30 10:18:42 - [71]: : 17G65: + 914800 [D1E7/5C

38=-62CE-3D77-9ED3-5F6D38EF0676]: 0x40

Jul 30 10:18:43 - [92065]: [92065]: BRMang ledID
/System/Library/PrivateFrameworks/CloudDocs. framework/Versions/A/CloudDocs (@Ox7fff8b

848c88) /System/Library/PrivateFrameworks/CloudDocsDaemon. framework/XPCServices/ContainerMetadataEx

tractor.xpc/Contents/Mac0S/ContainerMetadataExtractor (0x10a8e0528).

Jul 30 10:18:50 - [71]: : 17665+ + 914800 [D1E75C
38-62CE-3D77-9ED3-5F6D38EF0676]: 0x40

$




Can your ‘grep’ do this?

$ head -n 1 /var/log/system.log | rosie grep -o jsonpp num.denoted_hex

{nsn: 1’
Hall. 80,

STRUCTURED
OUTPUT OPTION

"data": "Jul 29 16:17:13 Jamies-Compabler timed[90268]: settimeofday({0x5b5e20c9,0x75bd3",

"subs":
[{usu: 62,
ueu: 72’
"data": "Ox5b5e20c9",
"subs":
[{nsu: 64,
uen: 72'
"data": "5b5e20c9",
"type": "num.hex"}],
"type": "num.denoted_hex"},
{"S": 73'
neu: 80,
"data": "@x75bd3",
"subs":
[{usu: 75,
neu: 80,
"data": "75bd3",
"type": "num.hex"}],

"type": "num.denoted_hex"}],

Iltypell : ll*ll}
$




Can your ‘grep’ do this?

$ head -n 1 /var/log/system.log | rosie grep -o jsonpp num.denoted_hex
{IISII: 1,
"e'": 80,

STRUCTURED
OUTPUT OPTION

"data": "Jul 29 16:17:13 Jamies-Compabler timed[90268]: settimeofday({@x5b5e20c9,0x75bd3",

"subs":
[{usu: 62,
ueu: 72’
"data": "0x5b5e20c9",
"subs":
[{nsn: 64,
ueu: 72’
"data'": "5b5e20c9",
"type": "num.hex"}]|,
"type": "num.denoted_hex"},
{usu: 73'
uen: 80,
"data'": "0x75bd3",
"subs":
[{usu: 75,
nen: 80,
"data": "75bd3",
Iltypell. Ilnum heX"}]
"type™: "num.denoted hex"}]
lltypell : ll*ll}
$




Can your ‘grep’ do this?

$ head -n 1 /var/log/system.log | rosie grep -o jsonpp num.denoted_hex
{llsll: 1’

STRUCTURED
OUTPUT OPTION

nen: 80,
"data": "Jul 29 16:17:13 Jamies—-Compabler timed[90268]: settimeofday({@x5b5e20c9,0x75bd3",
"subs":
[{IISII: 62,
ueu: 72’
"data": "0x5b5e20c9",
"subs":
[{usn: 64,
ueu: 72,
"data'": "5b5e20c9",
"type": "num.hex"}]|,
"type": "num.denoted hex"},
{usn: 73'
ueu: 80,
"data": "@x75bd3",
"subs":
[{usu: 75’
nen: 80,
"data': "75bd3",
"type"' unum hexu}]
"type™: "num.denoted hex"}],

thpeﬂ: ﬂ*ﬁ}
$




$ head -n 1 /var/log/system.log | rosie grep -o jsonpp num.denoted_hex

Can your ‘grep’ do this?

STRUCTURED
OUTPUT OPTION

zllsll: 1’
||eu: 80,
"data": "Jul 29 16:17:13 Jamies-Compabler timed[90268]:
"subs":
[{llsll: 62,
||e||: 72’
"data": "0x5b5e20c9",
"subs":
[{nsn: 64,
||e||: 72,
"data'": "5b5e20c9",
"type": "num.hex"}]|,
"type": "num.denoted_hex"},
{IISII: 73'
||e||: 80,
"data": "@x75bd3",
"subs":
[{IISII: 75'
||e||: 80,
"data": "75bd3",
Iltypell . Ilnum hexll}]
"type™: "num.denoted hex"}],

"type": "*"}

settimeofday({0x5b5e20c9,0x75bd3",

$




Rosle Patterns
Architecture §

{"S": 1’

\\v// "e': 12,
"type": "net.any",

"data": "192.168.0.1",
"'subs"':
[{llsll: 1,

RPL et 12,

- "type": "net.1ip",
Compller "data": "192.168.0.1",
""'subs'"':
['{"S" . 1'
"e'": 12,
"type": "net.1ipv4",
"data": "192.168.0.1"}]

}]

192.168.0.1




Rosle Patterns
Architecture 5

{IISII: 1’

\/ nall . 12,
"type": "net.any",
"data": "192.168.0.1",
""subs"':
['{"S": 1,

RPL et 12,

- "type": "net.1ip",
Compller "data": "192.168.0.1",
""'subs'"':
[{IISII . 1’
"e": 12,
"type": "net.1ipv4",
"data": "192.168.0.1"}]

}]

192.168.0.1

LMathi Engine |




Rosle Patterns
Architecture 5

{llsll: 1’

e ne: 12,
. RPL source ; \/ "type": “net.any",
2. © Parse tree (Rosie) data s =192.108:0.1%;

1
:23 o AST "subs":

3. : [{"s": 1,

4. Macro expansion i RPL gLy
5 | type ': "net.1ip,
6

/

"e': 12,
Simplification ; Compiler rduta"s "102.168.0.1",
=IR l "subs":
[{llSll . 1’
"e'": 12,
"type": "net.1ipv4",
"data": "192.168.0.1"}]

Code generation

}]

192.168.0.1

\‘,\v-ﬁ‘. | AR
=
~-4 I

m
i
; | HHHAHA

%

I}
|
l\
3
i
|

i '

|
1
;l
|1 )

h
= '.”l Yoo N 1
; - N\ 7 H A
'
v N i
y: = SN
| 2 e pour) Sty A
Y .
I ) /AL |
I N
I Nt
| N »
I N 4
i ' :
=
e
L)
| &
\ '

=
=

- A 4
INRIUR - s
RV CHI S

gy

b




Total time (seconds)

250.00

225.00

200.00

175.00

150.00

125.00

100.00

75.00

50.00

25.00

0.00

® rosie -0 json

® rosie_dev -0 json
grok/ruby

+ grok/jruby

Grok/ruby

Failed with utf8 error
before finishing

Grok/jruby

Failed with utf8 error
before finishing

1,000,000

2,000,000 3,000,000
Number of input lines (syslog)

4,000,000

Performance

Worse

Rosie 1.0.0 \7

~“Rosie 1.1.0

Better

" Notes: )
1.
2.
3.

L4'

Log entry parsing is one narrow use case.
Hard to design fair comparisons.

Rosie output is nested JSON; Grok output
s flat lists.

Rosie is single-threaded. )




Debugging

“To err is human, but to really fc
need a computer.”




Trace a (mis-)match

$ date | rosie match date.us_dashed

$




$ date | rosie match date.us_dashed

$
$ dat ie t date.us_dashed - h
Exp?eisIior:(:)s?:on::cﬁ—"ad:yuﬁ—"a:hgrt_long_yea r} aCe a (m IS- ) m atC

Looking at: {Mon Jul 30 12:43:09 EDT 2018)» (input pos =
No match

Pattern definition

—— Expression: month
Looking at: {Mon Jul 30 12:43:09 EDT 2018)» (input pos =
No match
L Expression: {{"1" [0-2]1} / {{"@"}? [1-91}} Input text
Looking at: {Mon Jul 30 12:43:09 EDT 2018)» (input pos = 1)
No match
— Expression: {"1" [0-2]}
Looking at: ¢{Mon Jul 30 12:43:09 EDT 2018) (input pos = 1)
No match
—— Expression: "1"
Looking at: {Mon Jul 30 12:43:09 EDT 2018) (input pos = 1)
No match
—— Expression: [0-2]
Not attempted
—— Expression: {{"0"}? [1-9]}
Looking at: {Mon Jul 30 12:43:09 EDT 2018)» (input pos = 1)
No match
—— Expression: "-"
Not attempted
—— Expression: day
Not attempted
—— Expression: "-" ]
Not attempted Matching steps

—— Expression: short_long_year
Not attempted



Read-eval-print loop

$ rosie repl

Rosie 1.0.0-sepcomp3

Rosie> import destructure as des
Rosie> .list des.x

Name Cap? Type Color Source
[snip]

numa lpha Yes pattern default;bold destructure
parentheses Yes pattern default;bold destructure
rest Yes pattern default;bold destructure
semicolons Yes pattern default;bold destructure
sep pattern default;bold destructure
s lashes Yes pattern default;bold destructure
term Yes pattern default;bold destructure
tryall pattern default;bold destructure
~ pattern default;bold builtin/prelude

24/24 names shown
Rosie>



Rosie> .match des.tryall "(1.2; 3.77; 0)"
{"data": "(1.2; 3.77; 0)",
"e': 15,
IISII: 1’
"subs":
[{"data": "(1.2; 3.77; 0)",
"e'": 15,
"S": 1'
"subs":
[{"data": "1.2; 3.77; 0",
"e'': 14,
"S": 2’
"subs™:
[{lldatall. ll1.2ll’
"e'": 5,
IISII: 2’
"type": "des.find.<search>"},

.............. S L L RGL L LELE LR EELEEEE LN o 1o
{"data": " 3.77",
"e': 11,
llsll: 6’
Mtype": "des.find. <search>"} |
---------------------------------------------------- snip

{lldatall. il OII
"e'': 14,

N1, 1"

Read-eval-print loop

4+ Define patterns
+ ITry them
+ Debug (trace) them



Rosie> .match des.tryall "(1.2; 3.77; 0)"
{"data": "(1.2; 3.77; 0)",
"e': 15,
IISII: 1’
"subs":
[{"data": "(1.2; 3.77; 0)",
"e'": 15,
IISII: 1'
"subs":
[{"data": "1.2; 3.77; 0",
"e'': 14,
"S": 2’

"subs™:
[{"data"'
"e': 5,
llsll: 2’
"type": "des.find.<search>"},

.............. S reerrrrsrrrerrerres G
{lldatall: ll p
"e': 11,

llsll. 6’
"type": "des.find. <search>"}

'"""""{-n;a-a-{-a-l;;"l --------------------- Ship
"e'': 14,

N ll, 1"

Read-eval-print loop

4+ Define patterns
+ ITry them
+ Debug (trace) them



Implementation Roadmap




Implementation Roadmap

v librosie as well as CLI, REPL
v Modules (shareable)
v Unit tests

¥ Output for humans and programs

J{Standard library (~300 general,
~600 Unicode patterns)

*Q 2" -

28 T s %g—




Implementation Roadmap

v librosie as well as CLI, REPL = Automated generation from regex
v Modules (shareable)

v Unit tests

v Output for humans and programs

ﬁStandard library (~300 general,
~600 Unicode patterns)

5 | - : - A b e -
. : - b :
‘Q 2\ o " ' . . ¢ " . - e -
e L s it gl S e
. S ’ . . ': ' & ~\‘ -~~." X et R e
v - - - - - ~~ . - o~

28 R 58 %q-




Implementation Roadmap

v librosie as well as CLI, REPL = Automated generation from regex
v Modules (shareable) = Ahead of time compilation

v Unit tests

v Output for humans and programs

;%Standard library (~300 general,

~600 Unicode patterns)

Y ‘Q A -

28 sl 58 %“-




Implementation Roadmap

v librosie as well as CLI, REPL = Automated generation from regex
v Modules (shareable) = Ahead of time compilation
v Unit tests = Formal semantics

v Output for humans and programs
‘}%Standard library (~300 general,
~600 Unicode patterns)

; . o

28 il 58 %‘#—




Implementation Roadmap

v librosie as well as CLI, REPL = Automated generation from regex
v Modules (shareable) = Ahead of time compilation
v Unit tests = Formal semantics

v Output for humans and programs = Static analysis

J Standard library (~300 general, - Worst-case run-time bounds

28 L & %‘l—




Using Rosie In programs

Today: | @ python X
: . GO

»Haskell =

PROGRAMMING
LANGUAGE

Once and future

ﬁ‘dQ Ruby ) Java

( P ORACLE N
|
|

Clojure

PRO GRAMMING

Language







Faster

+ Dev time:

Better

+ Conformance to RFCs

v library of patterns

v composable patterns
.p g + Readable syntax
+ Run time: |
+ Clear semantics (and no flags)

+ Plays well with Cheaper

- git/diff + ROl in reduced dev &
- package management maintenance

- build automation (unit tests)

v good match pert.

+ Free open source
software (MIT license)



