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What’s wrong with regex?
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Semantics

▪Not that of Regular Languages
▪Posix or Perl (or PCRE or js or …)
▪Variations by implementation 
– What does . (dot) match? 

– What does \10 mean?

▪Depends on flags not in the expr!
▪Combining is fraught
▪No “persistence” (packaging) std
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Author: bobince;  https://stackoverflow.com/questions/1732348/regex-match-open-tags-except-xhtml-self-contained-tags
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▪Exponential time algorithm is by far 
the most common

▪Most regex are embedded DSLs 
– Syntax issues (escaping) 

– Type issues 

– Requires scaffolding to write/debug regex 
‣ Less than 17% are tested, most lacking both positive 

& negative tests [Wang, Stolee ESEC/FSE ’18]
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Estimates are that less than 0.5%  
of data is ever analyzed. Antonio Regalado 

MIT Technology Review 

Why work on this?

“Every day, we create 2.5 quintillion 
 bytes of data”

IBM1

Regex use does not scale (# exps, # people, project lifetime)2



Rosie Pattern Language
“All progress depends on the unreasonable [woman]” 

George Bernard Shaw, paraphrased
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Rosie 
Pattern 
Language 
(and all PEG 
grammars)

Regular 
Expressions  
(strict) 

Chomsky hierarchy

Open 
Question: 
PEG > CFG 

Formal basis



RPL syntax: like a programming language



RPL syntax: like a programming language

Comments

Modules

Identifie
rs

Whitespace

Quoted lite
rals

Macro
s 

(not sh
own)

Unit te
sts



RPL syntax: like a programming language

Comments

Modules

Identifie
rs

Whitespace

Quoted lite
rals

Macro
s 

(not sh
own)

Unit te
sts

Readable, maintainable

Diffs like code, not line noise
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Kleene star is possessive, so always fails

 def=

Can write this instead

Macros implemented in             … for now. 
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Implementation
“I want to believe”                 Fox Mulder, FBI



Can your ‘grep’ do this?

-o     Output format

         subs ==> sub-matches

net.url 
==> package net, pattern url

Named patterns
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json
color

boolean

RPL 
Compiler

Rosie 
Architecture 

Patterns

Matching Engine

1. RPL source

2. ⇨ Parse tree (Rosie)

3. ⇨ AST

4. Macro expansion

5. Simplification

6. ⇨IR

7. Code generation



Performance
Worse

Better

Grok/ruby

Grok/jruby

Rosie 1.0.0

Notes:

1. Log entry parsing is one narrow use case.

2. Hard to design fair comparisons.

3. Rosie output is nested JSON; Grok output 

is flat lists.

4. Rosie is single-threaded.

Rosie 1.1.0



Debugging
“To err is human, but to really foul things up you 

need a computer.”  

                                                                Paul R. Ehrlich



Trace a (mis-)match



Trace a (mis-)match
Pattern definition

Input text

Matching steps
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✓ Unit tests 
✓ Output for humans and programs 
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~600 Unicode patterns)
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➡ Automated generation from regex
➡ Ahead of time compilation
➡ Formal semantics
➡ Static analysis 
– Worst-case run-time bounds 

– Common errors (linting)



Using Rosie in programs

Today:

Once and future:



Thank you!



Cheaper 
✦ ROI in reduced dev & 

maintenance 
✦ Free open source 

software (MIT license)

Faster 
✦ Dev time:  
✓ library of patterns  
✓ composable patterns 

✦ Run time: 
✓ good match perf.

Better 
✦ Conformance to RFCs 
✦ Readable syntax 
✦ Clear semantics (and no flags) 
✦ Plays well with 

- git/diff 

- package management 

- build automation (unit tests)

On the interwebs: 
@jamietheriveter 

https://rosie-lang.org 
https://gitlab.com/rosie-pattern-language


