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Raison d'être

1.  My team at IBM had to write lots of regex 
2.  We found that regex technology does not scale 

- # patterns  
- # people 
- data size 

3.  So I designed Rosie Pattern Language 
4.  Which I’ll describe and show 
5.  Concluding with a roadmap, and how you can get involved
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Estimates are that less than 0.5%  
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Current approaches
“If the only tool you have is a hammer…”   

                                                    Abraham Maslow



Regular expressions as tools:

grep  -v “^#\|^’\|^\/\/” 
egrep -o '((\d{1,3})([.]\d{1,3}){2}|\w+([.]\w+)+)'   
sed -e ':a' -e 'N' -e '$!ba' -e 's/\n/ /g'

On the command line:
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Regular expressions

Match an email address (obviously!): 

^((?>[a-zA-Z\d!#$%&'*+\-/=?^_`{|}~]+\x20*|"((?
=[\x01-\x7f])[^"\\]|\\[\x01-\x7f])*"\x20*)*(?
<angle><))?((?!\.)(?>\.?[a-zA-Z\d!#$%&'*+\-/=?
^_`{|}~]+)+|"((?=[\x01-\x7f])[^"\\]|\\[\x01-
\x7f])*")@(((?!-)[a-zA-Z\d\-]+(?<!-)\.)+[a-zA-Z]
{2,}|\[(((?(?<!\[)\.)(25[0-5]|2[0-4]\d|[01]?\d?
\d)){4}|[a-zA-Z\d\-]*[a-zA-Z\d]:((?=[\x01-\x7f])
[^\\\[\]]|\\[\x01-\x7f])+)\])(?(angle)>)$ 

Match a date with slashes, like 1/1/1970: 

^\d{1,2}\/\d{1,2}\/\d{4}$
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namespace!



Regex issue #1:  Notoriously hard to read & maintain

▪ Dense, cryptic syntax  

▪ Semantics vary across implementations 

▪ Flags that affect the semantics are not part of the pattern 

▪ Regex do not easily compose

“Some people, when confronted with a problem, think  
 ‘I know, I'll use regular expressions.’ 
 Now they have two problems.” 

Jamie Zawinski 
http://regex.info/blog/2006-09-15/247

http://regex.info/blog/2006-09-15/247
http://regex.info/blog/2006-09-15/247
http://regex.info/blog/2006-09-15/247
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▪ Dense, cryptic syntax  
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▪ Flags that affect the semantics are not part of the pattern 

▪ Regex do not easily compose

“Some people, when confronted with a problem, think  
 ‘I know, I'll use regular expressions.’ 
 Now they have two problems.” 

Jamie Zawinski 
http://regex.info/blog/2006-09-15/247

RPL syntax looks like a programming language. 

→ Patterns can be named 
→ Whitespace, comments, simplified operators 

RPL expressions compose. 

→ Enables encapsulation and packages of patterns

http://regex.info/blog/2006-09-15/247
http://regex.info/blog/2006-09-15/247
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Regex issue #2:  Performance is highly variable

Regular expression matching can be very efficient: 
linear time in the size of the input.

“The worst-case exponential-time backtracking strategy 
[is] used almost everywhere [but grep and RE2], including 
ed, sed, Perl, PCRE, and Python.”   

(Russ Cox https://swtch.com/~rsc/regexp/regexp2.html)

https://swtch.com/~rsc/regexp/regexp2.html)
https://swtch.com/~rsc/regexp/regexp2.html)
https://swtch.com/~rsc/regexp/regexp2.html)


Regex issue #2:  Performance is highly variable

Matching this $re against a 94-character input takes around 65 seconds 
in Perl* 

$re = “^(.*?,){29}Gold”;  
$input = “1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26, 
Bronze,Bronze,Gold,Silver”;

(*) Perl 5.16.3 darwin-thread-multi-2level
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Matching this $re against a 94-character input takes around 65 seconds 
in Perl* 

$re = “^(.*?,){29}Gold”;  
$input = “1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26, 
Bronze,Bronze,Gold,Silver”;

(*) Perl 5.16.3 darwin-thread-multi-2level

In RPL, expressions are greedy and possessive.


→ Backtracking is explicit 
→ To get exponential backtracking, you write it that way   

RPL makes it difficult to be accidentally inefficient.
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Issue #3: Regex collections?  Grok does this.  Others?

Caveats 
✦ Name collisions? Some versions will use the first seen, some the last 
✦ No packages, hierarchy, or dependencies 
✦ They are still unreadable and unmaintainable! 



Still cryptic, and they don’t play well with dev tools



Still cryptic, and they don’t play well with dev tools

RPL is designed like a programming language. 

→ It reads like code  
→ It diffs like code 
→ It debugs like code 
→ It tests like modular code



Rosie Pattern Language
“All progress depends on the unreasonable [woman]” 

George Bernard Shaw, paraphrased
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Can your ‘grep’ do this?

-o     Output format

         subs ==> sub-matches

pattern  net.url_common 
              ==> package net, pattern url_common

Named patterns



Can your ‘grep’ do this?
Customizable 
syntax 
highlighting



Matching line

num.denoted_hex

num.hex (a sub-match)

Structured 
output option

Can your ‘grep’ do this?



Chomsky hierarchy

Formal basis



By J. Finkelstein - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=9405226
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Expressions  
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Chomsky hierarchy

Open 
Question: 
PEG > CFG 

Formal basis
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RPL and regular expressions: similarities

Same syntax as regex • RPL is greedy

• RPL is possessive

pat? 
pat+ 
pat* 
pat{n} 
pat{n,m}

[:name:] 
[list] 
[a-z] 
[^…] 
[cs1 cs2 …]

Simplified syntax from 
regex

• RPL requires escaping of 

[ ] - ^ 

• RPL allows one name or list or 
range at a time:


[a-z123] not allowed

> pat 
< pat 
! pat

Simplified syntax from 
regex

• Compare to: 

(?=(pat)) 
(?<=(pat))



RPL and regular expressions: a key difference

p / q “Choice” is different:

RPL uses ordered choice, like other PEG grammars. 
Meaning: First try p.  If p fails, backtrack and try q.

Choices are possessive.



Patterns in the standard library (v1.0.0)

▪ Collections 
– net.any, date.any, etc. 
– all.things 

▪ Commonly needed 
– int, float, hex, and other numbers 
– several kinds of identifiers 
– path names for Unix and Windows 
– GUIDs 
▪ Network patterns 

– ip address (v4, v6, mixed), domain name, 
email address, url, URI, MAC, HTTP 

▪ Timestamps 
– RFC3339, RFC2822, and more than a 

dozen other common formats

▪ CSV data 
–  delimiters: , ; | 
–  quoted fields: “foo” or ‘bar’ 
–  escapes: "" or \" or \"\" 
▪ JSON data 

–  full parse 
–  match nested and balanced {} []

"22

▪ Source code features 
– 10 popular languages 

▪ De-structuring 
– E.g.  “CSC316” ==> “CSC”, “316” 
– E.g.  “(1.2, 3.77, 0)” ==> “1.2”, “3.77”, “0” 

▪ Log files 
– Syslog constituents (covers most log files) 
– Java exceptions, Python tracebacks

C
om

m
un

ity



Debugging
“To err is human, but to really foul things up you 

need a computer.”  

                                                                Paul R. Ehrlich
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Pattern definition
Input text

Failure point

Trace a (mis-)match



Read-eval-print loop



Read-eval-print loop

• Define patterns

• Try them

• Debug (trace) them



Read-eval-print loop

• Define patterns

• Try them

• Debug (trace) them



Executable unit tests



Executable unit tests

Part of the documentation

Regression when making changes

Use them in app build/compile stage



Some non-CLI use cases
“I want to believe”                 Fox Mulder, FBI



1. “Big data” parsing (streaming and batch)
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1. “Big data” parsing (streaming and batch)

2. Mining source code repositories
▪ “Micro-grammar” approach:  

How to build static checking systems using orders of 
magnitude less code by Brown, Nötzli, Engler 

▪ NCSU students:  

Wrote RPL patterns to extract 6 kinds of language 
features from 10 different languages



3. Secure engineering principle: Parse everything!
The most critical risk in every OWASP report since 2003:  Injection attacks (unvalidated input)  
Best practice:  Whitelist valid input, which requires parsing every input

W
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1. “Big data” parsing (streaming and batch)

2. Mining source code repositories
▪ “Micro-grammar” approach:  

How to build static checking systems using orders of 
magnitude less code by Brown, Nötzli, Engler 

▪ NCSU students:  

Wrote RPL patterns to extract 6 kinds of language 
features from 10 different languages



Using Rosie in programs: Python example

Task

Given a string indicating start of a line comment, count the non-blank 
non-comment lines (i.e. lines of code).

[snip]
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Using Rosie in programs: Python example

Task

Given a string indicating start of a line comment, count the non-blank 
non-comment lines (i.e. lines of code).

3. Match

1. Get engine

2. Compile RPL

[snip]



Using Rosie in programs: Improvements coming, and help wanted

Today:

Once and future:



Performance
Worse

Better

Grok/ruby

Grok/jruby

Rosie 1.0.0

Notes:

1. Log entry parsing is one narrow use case.

2. Hard to design fair comparisons.

3. Rosie output is nested JSON; Grok output 

is flat lists.



Roadmap & Community
“If you want to go fast, go alone. 
 If you want to go far, go together.”         
                                                                                “Proverb”



Roadmap



Roadmap

Extensibility 
User-written macros

User-written output encoders

Command line/scripting convenience 
Traverse directories

Follow links or not, etc.

Compiler Optimizations 
Common subexpression elimination

New vm instructions

Flow analysis

Pattern generation 
Algorithmic, e.g. from static analysis

Statistical / ML

Ahead of time compilation 
Fast startup

Small matching run-time (~50Kb binary)

Regex-to-rosie converter 
Re-use existing regex

Give them unit tests

Debug them



Implement features 
▪ Optimizations 
▪ Language-specific libs 
‣ Improve or create 
‣ Python, R, Go, Java, … 
▪ User-written extensions 
‣ Output encoders 
‣ Macros 
‣ Character sets

Write Tools 
▪ Package info 
▪ Better trace (compact) 
▪ Linter 
▪ Notebook (Jupyter?) 
▪ Integrations 
‣ scikit-learn 
‣ Spark

git clone … 
make;  
make install (optional)

Contribute Patterns 
▪ Domain-specific 
▪ Authoritative 
‣ E.g. from RFC 
▪ Non-English patterns!  
▪ “Looks like” (recognizers) 
▪ Byte-encoded data?

Join the Rosie user community!
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▪ Language-specific libs 
‣ Improve or create 
‣ Python, R, Go, Java, … 
▪ User-written extensions 
‣ Output encoders 
‣ Macros 
‣ Character sets

Write Tools 
▪ Package info 
▪ Better trace (compact) 
▪ Linter 
▪ Notebook (Jupyter?) 
▪ Integrations 
‣ scikit-learn 
‣ Spark

git clone … 
make;  
make install (optional)

Contribute Patterns 
▪ Domain-specific 
▪ Authoritative 
‣ E.g. from RFC 
▪ Non-English patterns!  
▪ “Looks like” (recognizers) 
▪ Byte-encoded data?

Join the Rosie user community!

Or: brew install rosie

Or: pip install rosie
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✓new patterns composed of existing patterns 

✦ Run time: matching performance very good
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✦ readable syntax, and strict semantics (and no flags) 
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Conclusion

Faster 
✦ Dev time:  
✓ library of patterns you don’t have to write 
✓new patterns composed of existing patterns 

✦ Run time: matching performance very good

Better 
✦ shareable libraries 
✦ conformance to RFCs 
✦ readable syntax, and strict semantics (and no flags) 
✦ plays well with DevOps tools (git/diff, package management, unit tests)

Cheaper 
✦ ROI in reduced development and maintenance costs 
✦ And, it’s free open source software (MIT license)



Thank you!





Additional slides for 
reference



Rosie Pattern Language features
▪Pattern libraries 
– Standard library 
– Community libraries (e.g. GitHub) 
– User libraries 
▪Output formats 
– Colorized text for humans 
– JSON for programs 
– Full lines or just matches (like grep) 
– And others… 

▪Development tools 
– Command line interface, read/eval/print loop 
– Trace output 
– Unit tests (automated) 
– Packages (shareable) 

▪Built for big data (but can be used like grep) 
– Readable, maintainable 
– Works well with git/diff, pipelines (unit tests), dependency mgmt

Formal basis: 
✦ Parser combinators 
✦ Based on Parsing Exp. Grammars

✦ Linear-time in input size: O(n) 
✦ Not a “packrat” implementation



The formal basis of RPL
▪ Rosie’s operators are parser combinators 

– Based on Parsing Expression Grammars  
– Not CFG (slow!) or regex (limited!) 
– Express all deterministic (unambiguous) CFLs 
– And some non-CFLs, e.g. anbncn  

– Key advantage: accept recursive structures 

▪ PEGs [Ford, 2004] 
– “Scanner-less parsing” 
– Linear time matching 
– Languages recognized by PEGs are 
▪ A superset of regular languages 
▪ All languages recognized by LL(k) and LR(k) parsers 

▪ LPEG library [Ierusalimschy, 2008]  
➡Gives a space-efficient PEG matching algorithm 
➡ Linear time in input size 

Rosie’s matching engine is an 
enhanced version of LPEG



Architecture

Compiler, run-time, std lib total ~500 KB on disk
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Architecture

Parsing (Rosie!)

Macro expansion

Syntax expansion

Compiler

Binary output

Matching VM

Based on LPEG

RPL Compiler   ~ 5k sloc, Lua + Requires liblua.a (330 KB)
Rosie Engine << 1k sloc, Lua


  ~ 3k sloc, C
+ Requires liblua.a (330 KB) 

+ Requires cjson.so (50KB)

Rosie CLI, REPL < 1k sloc, Lua + Requires readline.so (from user)

Compiler, run-time, std lib total ~500 KB on disk
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Algorithmic

• Regex to RPL

• App config to RPL

• Format str to RPL


Statistical/ML

• Learn from sample data

• Correlate with producer src

• Infer from desc/headings

(1) Some possible generators:



Cool ideas (i.e. future work)

•Common subexpression

• Fast literal search


• Boyer-Moore, or

• Knuth-Morris-Pratt


•Hand-assemble VM?

• JIT

(2) Some possible optimizations:

Algorithmic

• Regex to RPL

• App config to RPL

• Format str to RPL


Statistical/ML

• Learn from sample data

• Correlate with producer src

• Infer from desc/headings

(1) Some possible generators:



Rosie is self-hosting
▪ Rosie is a parser, and Rosie is used to parse Rosie Pattern Language 

▪ About 110 lines of RPL (core) to define the RPL 

▪ Could support multiple versions of RPL, even different dialects 

▪ Non-trivial user extensions to RPL can be enabled by: 
– Specifying RPL for the extension (to RPL) 
– Writing a compiler “plug-in” for the extension 
– The compiler plug-in interface has not yet been designed… hint!

$ rosie match -o line '!{[:space:]*$} !{[:space:]* "--"}' rpl_1_1.rpl | wc 
     111     652    4155


