......
N

. ;";"

DI ,
el 5 ak

Rosle Pattern Language:

roving on 50-Year Old Regular Expression Technology

Ph.D. On the interwebs:
r Science @jamietheriveter

http://rosie-lang.org
https://gitlab.com/rosie-pattern-language

http://twitter.com/jamietheriveter
http://twitter.com/jamietheriveter
http://tiny.cc/rosie
http://tiny.cc/rosie
http://rosie-lang.org

Meanwhile...

>

v

GitLab

>

https://www.csc.ncsu.edu
http://www.ibm.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://gitlab.com

Raison d'étre

1. My team at IBM had to write lots of regex

2. We found that regex technology does not scale
- # patterns
- # people
- data size

3. So | designed Rosie Pattern Language
4. Which I'll describe and show

5. Concluding with a roadmap, and how you can get involved

IBM Cloud DevOps Insights

DevOps Insights

Continuous Delivery Continuous Availability Continuous Security

Open Toolchain

/ ' Ovien . ,@ ([A“) k .DI @ x" ¥JIRA
Os» | Q@ @ O©®H ® @ e

bluemix.net/devops

IBM Cloud DevOps Insights

DevOps Insights

Continuous Delivery Continuous Availability Continuous Security

Open Toolchain

, Ovien . ,@ (('I') .[]I @ p
~Q* 1 €0@ O a 6 @@ .2

bluemlx net/ devops

IBM Cloud DevOps Insights

DevOps Insights

Continuous Delivery Continuoy g/ailability Continuous Security

2 2 R GBE S NN O o
~1°e°:3 : § @ @ © m @ . @

bluemlx net/ devops

Planet-wide

"‘Every day, we create 2.5 quintillion
bytes of data”

IBM

' 0
Estimates are that less than 0.5% Antonio Regalado
of data is ever analyzed! MIT Technology Review

—

Planet-wide

"‘Every day, we create 2.5 quintillion
bytes of data”

Estimates are that less than 0.5%
of data is ever analyzed!

Data AVAILABLE to
an organization

jssed
o“\bﬁgorwmw

v

Data an organization
can PROCESS

IBM

Antonio Regalado,
MIT Technology Review

Planet-wide _ .
\

2. Write code/
expressions to

parse data
|
"Every day, we create 2.5 quintillion 3. Test and correct
arser
bytes of data” =

4. Annotate data
with semantic tags

Estimates are that less than 0.5% -
of data is ever analyzed! > Ve coce 1o

6. Write code to
correlate entries

/. Calculate meta-
data (enumerations,
esed ranges, etc.)

/
| Data an organization

Data AVAILABLE to
an organization

can PROCESS

Planet-wide

"‘Every day, we create 2.5 quintillion

bytes of data”

Estimates are that less than 0.5%
of data is ever analyzed!

Data AVAILABLE to
an organization

2. Write code/
expressions to
parse data

3. Test and correct
parser

4. Annotate data
with semantic tags

Fasmsamamssssmsns Jreenunnnnnanns

5. Write code to
normalize values

6. Write code to
correlate entries

/. Calculate meta-

data (enumerations,

ranges, etc.)

Data an organization
can PROCESS

/
oo |

Current ac

“If the only tool you have is a ha

On the command line:
grep -v “M\ [\ [M\/\/)”

egrep -0 '((\A{1,3D([.]\NA{L,3}) {2} [\w+([.]\w+)+)
sed -e :a' - 'N'-e '$!ba' -e 's/\n/ /¢

On the command line:
grep -v “ M\ |\ [N/ \/”
egrep -0 '((\A{1,3D([.]\NA{L,3}) {2} [\w+([.]\w+)+)
sed -e :a' - 'N'-e '$!ba' -e 's/\n/ /¢

PCRE (C/C++)
PCRE2 (C/C++)
Perl

XQuery & XPath

XRegExp

http://www.regular-expressions.info/tools.html

Regular expressions

Match a date with slashes, like 1/1/1970:

“\d{1,2}\/\d{1,2}\/\d{4}$

Match an email address (obviously!):

A((?>[a-zA-Z\A'#S%&' *+\—/=?"_‘ {1 }~]1+\x20%|" ((?
=[\x01-\x7£]) [*"\\]I\\[\x01-\x7£]) *"\x20%) * (7
<angle><))?((?2!'\.) (?>\.?[a-zA-Z\A'#S%&"'*+\-/="
A {1 ~TH)HI T ((?=[\x01-\x7£]) [*"\\]I\\[\x01-
\xX7£1)*")Q(((?!'-) [a-zA-Z\dA\-]+(?<!'-)\.)+[a-zA-Z]
{2, }INLCC(?2(?<'\[)\.) (25[0-5]|2[0-4]\d| [01]?\d?
\d)) {4} | [a-zA-Z\d\-]*[a-zA-Z\d]: ((?=[\x01-\x7f])
[*\N\NNINTTINN[\x01-\x7£])+)\]) (? (angle)>)$

Regular expressions Rosie Pattern Language

Match a date with slashes, like 1/1/1970: 1
{ date.slashed ¢}
"\d{1,2}\/\d{1,2}\/\d{4}$ ik

Match an email address (obviously!):

A((?>[a-zA-Z\A'#S%&' *+\—/=?"_‘ {1 }~]1+\x20%|" ((?
=[\x01-\x7£]) [*"\\]I\\[\x01-\x7£]) *"\x20%) * (7
<angle><))?((?2!'\.) (?>\.?[a-zA-Z\A'#S%&"'*+\-/="
A {1 ~TH)HI T ((?=[\x01-\x7£]) [*"\\]I\\[\x01-
\xX7£1)*")Q(((?!'-) [a-zA-Z\dA\-]+(?<!'-)\.)+[a-zA-Z]
{2, }INLCC(?2(?<'\[)\.) (25[0-5]|2[0-4]\d| [01]?\d?
\d)) {4} | [a-zA-Z\d\-]*[a-zA-Z\d]: ((?=[\x01-\x7f])
[*\N\NNINTTINN[\x01-\x7£])+)\]) (? (angle)>)$

{ net.email

Regular expressions Rosie Pattern Language

Match a date with slashes, like 1/1/1970:

“\d{1,2}\/\d{1,2}\/\d{4}8$

Match an email address (obviously!):

A((?>[a-zA-Z\A'#S%&' *+\—/=?"_‘ {1 }~]1+\x20%|" ((?
=[\x01-\x7£]) [*"\\]I\\[\x01-\x7£]) *"\x20%*) * (?
<angle><))?((?2!'\.) (?>\.?[a-zA-Z\A'#S%&"'*+\-/="

A {1 ~TH)HI T ((?=[\x01-\x7£]) [*"\\]I\\[\x01-
\xX7£])*")Q@(((?'-) [a-zA-Z\dA\-]1+(?<'-)\.)+[a-zA-Z]
{2, }INLCC(2(?<!'\[)\.) (25[0-5]12[0-4]\d| [01]?\d?
\d)) {4} | [a-zA-Z\d\-] *[a-zA-2Z\d] : ((?=[\x01-\x7£f])
[*NNNINTTINN[\x01-\x7£])+)\]) (? (angle)>)$ namespace!

{ net.email

Regex issue #1: Notoriously hard to read & maintain

= Dense, cryptic syntax

= Semantics vary across implementations

= Flags that affect the semantics are not part of the pattern

= Regex do not easily compose

‘Some people, when confronted with a problem, think
I know, I'll use regular expressions.’
Now they have two problems.”

Jamie ZawinskKi
http://regex.info/blog/2006-09-15/247

http://regex.info/blog/2006-09-15/247
http://regex.info/blog/2006-09-15/247
http://regex.info/blog/2006-09-15/247

Regex issue #1: Notoriously hard to read & maintain

= Dense, cryptic syntax

.%_rga -~ g Folt ”‘ s Ii-‘ - .;.. ".: . -“_

+ Semani RPL syntax looks like a programming language.
= Flags t
- Regexd Patterns can be named

— Whitespace, comments, simplified operators

RPL expressions compose.

1

— Enables encapsulation and packages of patterns

T AR N W W - ' @ W on Yoo

"\ JV\ \ T\ "A'ACEEVIRYIWY

Jamie Zawinski
http://regex.info/bloq/2006-09-15/247

http://regex.info/blog/2006-09-15/247
http://regex.info/blog/2006-09-15/247
http://regex.info/blog/2006-09-15/247

Regex issue #2: Performance is highly variable

Regular expression matching can be very efficient:
linear time in the size of the input.

“The worst-case exponential-time backtracking strategy

[Is] used almost everywhere [but grep and REZ2], including
ed, sed, Perl, PCRE, and Python.”

(Russ Cox https://swtch.com/~rsc/regexp/regexp2.htmil)

https://swtch.com/~rsc/regexp/regexp2.html)
https://swtch.com/~rsc/regexp/regexp2.html)
https://swtch.com/~rsc/regexp/regexp2.html)

Regex issue #2: Performance is highly variable

Matching this $re against a 94-character input takes around 65 seconds
in Perl”

$re = “M.*?,){29}Gold”;
$input = “1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,
Bronze,Bronze,Gold,Silver”;

(*) Perl 5.16.3 darwin-thread-multi-2level

Regex issue #2: Performance is highly variable

In RPL, expressions are greedy and possessive. Seconds

— Backtracking is explicit
— To get exponential backtracking, you write it that way

24,25,20,

RPL makes it difficult to be accidentally inefficient.

(*) Perl 5.16.3 darwin-thread-multi-2level

Issue #3: Regex collections”? Grok does this. Others?

Grok sits on top of regular expressions, so any regular expressions are valid in
grok as well. The regular expression library is Oniguruma, and you can see the full
supported regexp syntax on the Oniguruma site.

A
Analysis

a L
T @ — Q

/ Monitoring
logstash
Alerting

=

Issue #3: Regex collections? Grok does this. Others?

Grok sits on top of regular expressions, so any regular expressions are valid in
grok as well. The regular expression library is Oniguruma, and you can see the full
supported regexp syntax on the Oniguruma site.

Logstash ships with about 120 patterns by default. You can find them here:
https://github.com/logstash-plugins/logstash-patterns-core/tree/master/patterns.
You can add your own trivially. (See the patterns_dir setting)

Issue #3: Regex collections”? Grok does this. Others?

Grok sits on top of regular expressions, so any regular expressions are valid in

grok as well. The regular expression library is Oniguruma, and you can see the full

supported regexp syntax on the Oniguruma site.

Logstash ships with about 120 patterns by default. You can find them here:

https://github.com/logstash-

You can add your own trivial

plugins/

y. (Seet

ogstash-patterns-core/tree/master/patterns.

ne patterns_dir setting)

Caveats

+ Name collisions? Some versions will use the first seen, some the last

+ No packages, hierarchy, or dependencies

+ They are still unreadable and unmaintainable!

Still cryptic, and they don’t play well with dev tools

grok$ diff orig copy

18c18

< QUOTEDSTRING (?2>(2<!\\)(?2>"(?2>\\. | ["\\"]+)+"|""

(75" (7>\\.

> QUOTEDSTRING (?>(?2(2<!\)(?2>"(2>\\. | [™\\"]+)+"|"

26Cc26

< IPV6 ((([0-9A-Fa-f]{1,4}:){7}([0-9A-Fa-f]{1,4}|:))
€72\d) (\.(25[0-5] |2[0-4]\d|1\d\d | [1-9]?\d)){3})|:)) | ((

(7>'(?7>\\.

A\

A\

+)+"')

+)+"')

(7> (7>\\.
(7> (?7>\\.

M\

M\

1+)+7)| 7))

+)+7)| 7))

(([0-9A-Fa-f]1{1,4}:){6}(: [0-9A-Fa-f]1{1,4}|((25[0-5]|2[0-4]\d|1\d\d|[1-9] @
(0-9A-Fa-f]{1,4}:){5}(((:[0-9A-Fa-f]{1,4}){1,2})|:((25[0-5]|2[0-4]\d|1\d\ =@

@d| [1-9]7\d) (\.(25[0-5] |2[0-4]\d|1\d\d | [1-9]?\d)){3})|:)) | (([0-9A-Fa-f]{1,4}:){4}(((: [0-9A-Fa-f]{1,4}){1,3})|((:[0-9A-Fa-f]{1, @
€4})7:((25[0-5] |2[0-4]\d|1\d\d | [1-9]?\d) (\. (25[0-5] |2[@0-4]\d |1\d\d| [1-9]1?\d)){3}))|:)) | (([0-9A-Fa-f]1{1,4}:){3}(((:[0-9A-Fa-f]{®

€1,4}){1,4})
SA-Fa-f]1{1,4}:){2}(((: [0-9A-Fa-f]1{1,4}){1,5})
& [1\d\d| [1-9
@d\d|[1-9]1?\d) (\.(25[0-5] |2[0-4]1\d|1\d\d | [1-9]

((:[0-9A-Fa-f]{1,4}){0,2}:((25[0-5]|2[0-4]\d

1\d\d| [1-9]1?\d) (\. (25[0-5] | 2 [0-4]
((:[0-9A-Fa-f1{1,4}){0,3}:((25[0-5] |2[0-4]\d
2\d)){3})) [:)) | (([0-9A-Fa-f1{1,4}:){1}(((: [0-9A-Fa-f1{1,4}){1,6})|((:[0-9A-Fa—-f1{1,4}){0,4}:((25[0-5]1|2[0-4]\d |1\
2\d)){3}3))|:))|(:(((:[0-9A-Fa-f1{1,4}){1,7})

& [2[0-4]\d|1\d\d | [1-9]7?\d) (\. (25[0-5] |2[0-4]\d |1\d\d| [1-9]1?\d)){3})) |:))) (%.+)?

> IPV6 ((([0-9A-Fa-f]{1,4}:){7}([0-9A-Fa-f]{1,4}]|:))

@?\d) (\.(25[0-5] |2[0-4]\d|1\d\d | [1-9]?\d)){3})|:))

&d|[1-91?\d) (\.(25[0-5] [2[0-4]1\d|1\d\d | [1-9]

€4})7:((25[0-5]|2[0-4]1\d|1\d\d | [1-9]1?\d) (\. (25[0-5]
€1,43){1,4}) | ((: [0-9A-Fa-f1{1,4}){0,3}: ((25[0-5] |2

Gd\d|[1-917\d) (\. (25[0-5]|2[0-4]1\d|1\d\d | [1-9]

A-Fa—f]
1\d\d

2[0-4
grok$

(([0-9A-Fa-f1{1,4}:){6}(:[0-9A-Fa-f]1{1,4}
(([0-9A-Fa-f1{1,4}:){5}(((:[0-9A-Fa-f1{1,4}){1,2})|:((25[0-5]|2[0-4]\d|1\d\ =
2\d)){3})|:)) | (([0-9A-Fa-f1{1,4}:){4}(((: [0-9A-Fa-f]{1,4}){1,3})|((:[0-9A-Fa—f]
|2[0-4]\d|1\d\d | [1-9]1?\d)){3}))|:)) | (([0-9A-Fa-f]{1,4}:){3}(((:[0-9A-Fa-f]{ =@
0-41\d |1\d\d| [1-917\d) (\. (25[0-5] | 2[0-4]
{1,4}:){2}(((: [0-9A-Fa-f]1{1,4}){1,5}) | ((: [0-9A-Fa-f]{1,4})4{0,3}:((25[0-5]|2[0-4]\d

\d|1\d\d | [1-9]12\d)){3}))|:)) | (([0-9&
1\d\d | [1-917\d) (\. (25[0-5] |2[0-4]\d 2

((: [0—9A—Fa—f]{1;4}){0; 5}: ((25 [0—5] i

((25[0-51]2[0-4]\d|1\d\d]|[1-9] @

{1, »

\d |1\d\d| [1-917\d)){3})) |:)) | ((
1\d\d | [1-91?\d) (\. (25[0-5] |2 [0-4]\d 2

(0-92

[1-9]1?\d)){3}))|:)) | (([0-9A-Fa-f]1{1,4}:){1}(((:[0-9A-Fa-f]{1,4}){1,6})|((:[0-9A-Fa-f]1{1,4}){0,3}:((25[0-5]|2[0-4]\d|1\=

2\d)){3}))[:)) | (:(((:[0-9A-Fa-f]1{1,4}){1,7})

\d|1\d\d| [1-9]?\d) (\. (25[0-5] [2[0-4]\d|1\d\d| [1-9]?\d)){3})) |:))) (%.+)?

((:[0-9A-Fa-f]1{1,4}){0,5}:((25[0-5] @

Still cryptic, and they don’t play well with dev tools

| grok$ diff orig copy

' 18c18

- < QUOTEDSTRING (7>(TR 0T WOPRIRERTL | ¥ VR] T Y S| | Sy TR PRt LI XY, S [V gy Dr T . U
> QUOTEDSTRING (7>(
26C26

< 1pv6 (((l0-9r-Fa-§ RPL Is designed like a programming language. o-41\d|1\d\d | [1-9] @
@?\d) (\.(25[0-5]|2[0 0-5]2[0-4]1\d|1\d\ 2
Gd| [1-917\d) (\.(25[0 | ((:[0-9A-Fa-f1{1, @
€4})?:((25[0-5]|2[0- _ 33(((:[0-9A-Fa- f]{i
anrafiina @ — ltreads like code 2 (2510-31|2(0-4]\d
@ |1\d\d|[1-9]17\d)){3 : : D5[0-51|2[0-41\d |1\ =
Gd\d|[1-9]7\d) (\. (2 — It diffs like code 4}){0,5}: ((25[0-5] @

“l2leaindifndili-4 - It debugs like code

> IPV6 ((([0-9A-Fa- - 0-4]\d|1\d\d| [1-9] @
<nd) (v (2510-51 210 — It tests like modular code 0-5]2[0-4]1\d | 1\d\ 2
&d| [1-91?2\d) (\.(25[@ | ((: [0-9A-Fa-f]{1, @
§4})7:((25[0-5]|2[0- 3}(((:[0-9A-Fa-fl{®
'Gl 4}){1,4})|((:[0-9 : _ : !)){3}))|)) | (([0-9@
SA-Fa-f1{1,4}:){2}((} \= . = 17) 10 0-2T\U] L d\C 31 7\0) tR. (25[0-5]|2[0-4]\d=
.‘ 1\d\d | [1- 9]7\d)){3}))|))I(([O 9A Fa f]{l 4}:){1}((([0 OA- Fa f]{1 4}){1 6})|(([0-9A-Fa-f]{1, 4}){@ 3} ((25[0 -5]112[0-4]\d |1\
&d\d| [1-9]?\d) (\.(25[0-5] |2[@-4]\d|1\d\d | [1-9]?\d)){3}))|:)) | (:(((:[0-9A-Fa-f]{1,4}){1,7})|((:[0-9A-Fa-f]{1,4}){0,5}:((25[0-5] @
@ [2[0-4]\d|1\d\d | [1-9]?\d) (\.(25[0-5] |2[0-4]\d|1\d\d | [1-9]?\d)){3}))|:)))(%.+)?
- grok$

Rosle Patte

"All progress depends on the unree
George Berne

RPL

———— json.rpl rpl patterns for processing json input

———— © Copyright IBM Corporation 2016, 2017, 2018.
———— LICENSE: MIT License (https://opensource.org/licenses/mit-license.html)
———— AUTHOR: Jamie A. Jennings

package json
import word, num
local key = word.dq

local string = word.dq
local number = num.signed_number

local true = "true"
local false = "false"
local null = "null"”

grammar
member = key ":" value
object = "{" (member ("," member)x)? "}"
array = "[" (value ("," value)x)? "]"
in
value = ~ string / number / object / array / true / false / null
end

—— test value accepts "true", "false", "null"

—— test value rejects "ture", "f", "NULL"

—— test value accepts "0", "123", "-1", "1.1001", "1l.2e10", "1l.2e-10", "+3.3"

—— test value accepts "123e65", "0Qe+1", "0Qel", "20el", "1E22", "1E-2", "1E+2", "123e45", "le-2",
—— test value accepts "\"hello\"", "\"this string has \\\"embedded\\\" double quotes\""

—— test value rejects "hello", "\"this string has no \\\"final quotel\\\" "

—— test value rejects "--2", "9.1.", "9.1.2", "++2", "2E02."

—— test value accepts "I[]1", "I[1, 2, 3.14, \"V\", 6.02e23, truel", "I[1, 2, [7], [I[8]]]"
—— test value rejects "I[11", "I, "[[]", "{1, 2}"

—— test value accepts "{\"one\":1}", "{ \"one\" :1}", "{ \"one\" : 1 }"
—— test value accepts "{\"one\":1, \"two\": 2}", "{\"one\":1, \"two\": 2, \"array\":[1,2]}"
—— test value accepts "[{\"v\":1}, {\"v\":2}, {\"v\":3}]"

II1e+2II

RPL

———— Jjson.rpl

———— © Copyright IBM Corporation 2016, 2017, 2018.
———— LICENSE: MIT License (https://opensource.org/licenses/mit—-license.html)
———— AUTHOR: Jamie A. Jennings

package json

import word, num

rpl patterns for processing json input

]] 1e_2II ,

local key = word.dq
local string = word.dq
local number = num.signed_number
local true = "true"
local false = "false"
local null = "null"
grammar
member = key ":" value
object = "{" (member ("," member)x)? "}"
array = "[" (value ("," value)x)? "]"
in
value = ~ string / number / object / array / true / false / null
end
—— test value accepts "true", "false", "null"
—— test value rejects "ture", "f", "NULL"
—— test value accepts "0", "123", "-1", "1.1001", "1l.2e10", "1l.2e-10", "+3.3"
—— test value accepts "123e65", "0@e+1", "0el", "20el", "1E22", "1E-2", "1E+2", "123e45",
—-— test value accepts "\"hello\"", "\"this string has \\\"embedded\\\" double quotes\""
—— test value rejects "hello", "\"this string has no \\\"final quotel\\\" "
-- test value rejects "--2", "9.1.", "9.1.2", "++2", "2E02."
—— test value accepts "I[]1", "I[1, 2, 3.14, \"V\", 6.02e23, truel", "I[1, 2, [7], [I[8]]]"
—— test value rejects "I[11", "I, "[[]", "{1, 2}"
—— test value accepts "{\"one\":1}", "{ \"one\" :1}", "{ \"one\" : 1 }"
—— test value accepts "{\"one\":1, \"two\": 2}", "{\"one\":1, \"two\": 2, \"array\":[1,2]}"
—— test value accepts "[{\"v\":1}, {\"v\":2}, {\"v\":3}]"

II1e+2II

Can your ‘grep’ do this?

Q NAMED PATTERNS

$ curl -s www.google.com

Can your ‘grep’ do this? NAMED PATTERNS

$ curl -s www.google.com

<!doctype html><html itemscope="" itemtype="http://schema.org/WebPage" lang="en"><head><meta content="Search the world's 1=
snformation, including webpages, images, videos and more. Google has many special features to help you find exactly what yo=
su're looking for." name="description'><meta content="noodp" name="robots"><meta content="text/html; charset=UTF-8" http-eq=
suiv="Content-Type'><meta content="/1images/branding/googleg/1x/googleg_standard_color_128dp.png" itemprop="image"><title>Go=
sogle</title><script nonce="Jfwlalwglqg/p59AusKSAHQ==">(function(){window.google={kEI: '8g-sW7rQlezTjwTMp7qYCw"', KEXPI:'®,1353=
«747,57,1654,304,583,433,281,838,287,1071,154,731,141,193,55,802,209,97,42,258,31,168,356,2337766,231,32,329294,1294,12383, =
€«4855,32692,15247,867,41,275,10445,1402,6381,3335,2,2,4604,2197,367,1214,326,1776,2314,3191,224,2218,260,5107,575,1119,2,57=
«8,728,606,1826,58,2,1,3,1297,1712,2158,453, 2096, 658,636, 8,302,1267,222,552,1231,884,133,283,2,841,283,3337,525,22,599,5,2, =
«2,743,574,426,748,3,774,1472,283,556,1266,464,1450,69,1050,334,10,120,328,782,234,386,8,1003,81,7,1,2,26,462,93,527,29,983=
<,6,406,444,7,7,62,569,1216,99,429,241,536,412,499,119,668,393,1068,45,79,374,1085, 243,2,8,304,318,59,88,411,412,2,198, 355, =
«454,54,1142,144,280,76,16,21,1,54,18,40,63, 2,288, 255,108, 263,4,135,130, 3,460, 2,35,202,58,43,73,12,28,1,1005,6,32,385,67,15=
<9,92,556,135,38,61,180,332,287,218,116,38,45,58, 24,219, 466,15,377,159,28,68,183,68,56,94,2,332,680,276,331,384,127,672,599=
€«2947,2554,5997691,20,28000/5,4,1572,549,332,445,1,2,1,1,7/8,1,512, 388, 583, 9, 3¢04,1,8,1,2,1,1,213¢0,1,1,1,1,1,414,1,263,49,39, =
«22,5,1,5,5,6,121,67,2,2,4,2,38,6,1,33,8,22308707"' ,authuser:0,kscs: 'c9c918f0_8g-sW7rQlezTjwTMp7gYCw',kGL: 'US"'};google.kHL="=
sen'; })();google.time=function(){return(new Date).getTime()}; (function(){google.lc=[];google.1i=0;google.getEI=function(a){=
sfor(var b;a&&('a.getAttribute||!(b=a.getAttribute("eid")));)a=a.parentNode;return b||google.kEI};google.getLEI=function(a) =
s{for(var b=null;a&&('a.getAttribute||!(b=a.getAttribute("1leid")));)a=a.parentNode;return b};google.https=function(){return=
«"https:'"==window. location.protocol};google.ml=function(){return null};google. log=function(a,b,e,c,qg){if(a=google. logUrl(a, =
sb,e,c,qg)){b=new Image;var d=google.lc,f=google.li;d[fl=b;b.onerror=b.onload=b.onabort=function(){delete d[f]};google.vel&&?
sgoogle.vel. lu&&google.vel. lu(a);b.src=a;google. li=f+1}};google. logUrl=function(a,b,e,c,g){var d="",f=google.ls||"";e||-1!==
sb.search("&ei=") || (d="&ei="+google.getEI(c),-1==b.search("&lei=")&&(c=google.getLEI(c))&&(d+="&lei="+c));c=""; le&&google.c?
sshid&&—1==b.search("&cshid=")&&" s h" I=a&&(c="&cshid="+google.cshid);a=e||"/"+(g]| |"gen_204")+"?atyp=i&ct="+a+"&cad=""+b+d+f+=
«""S§&zx="+google.time()+c;/~http:/i.test(a)&&google.https()&&(google.ml(Error("a"),!'1,{src:a,glmm:1}),a="");return a};}).callz
$(this); (function(){google.y={};google.x=function(a,b){if(a)var c=a.id;else{do c=Math.random();while(google.ylc])}google.y[>=
sc]=[a,bl;return!1};google. lm=[];google.plm=function(a){google. lm.push.apply(google.1lm,a)};google. lg=[];google. load=functio=
sn(a,b,c){google. lq.push([[al,b,c])};google. loadAll=function(a,b){google. lq.push([a,bl)};}).call(this);google.f={};</scripte=
s><script nonce="JfwlaIwglq/p59AusKSAHQ==">var a=window.location,b=a.href.index0f("#");if(@<=b){var c=a.href.substring(b+1) =
$;/(~&)g=/.test(c)&&—1==c.indexOf ("#")&&a.replace("/search?"+c.replace(/("~|&) fp=["&]l*/g,"")+"&cad=h") };</script><style>#gb=
sar,#guser{font-size:13px;padding-top:1px !important; }#gbar{height:22px}#guser{padding-bottom:7px !important;text-align:rigz=

Can your ‘grep’ do this?

Q NAMED PATTERNS

$ curl -s www.google.com

Can your ‘grep’ do this?

Q NAMED PATTERNS

$ curl -s www.google.com | rosie grep -o subs net.url_common

Can your ‘grep’ do this? NAMED PATTERNS

$ curl -s www.google.com | rosie grep -o subs net.url_common
http://schema.org/WebPage
http://www.google.com/imghp?hl=en&tab=wi
http://maps.google.com/maps?hl=en&tab=wl
https://play.google.com/?hl=en&tab=w8
http://www.youtube.com/?7gl=US&tab=wl
http://news.google.com/nwshp?hl=en&tab=wn
https://mail.google.com/mail/?tab=wm
https://drive.google.com/?tab=wo
https://www.google.com/intl/en/options/
http://www.google.com/history/optout?hl=en
https://accounts.google.com/ServiceLogin?hl=en&passive=true&continue=http://www.google.com/
https://plus.google.com/116899029375914044550

$

Can your ‘grep’ do this?

Q NAMED PATTERNS

$ curl -s www.google.com | rosie grep -o subs net.url_common
http://schema.org/WebPage
http://www.google.com/imghp?hl=en&tab=wi
http://maps.google.com/maps?hl=en&tab=wl
https://play.google.com/?hl=en&tab=w8
http://www.youtube.com/?7gl=US&tab=wl
http://news.google.com/nwshp?hl=en&tab=wn
https://mail.google.com/mail/?tab=wm
https://drive.google.com/?tab=wo
https://www.google.com/intl/en/options/
http://www.google.com/history/optout?hl=en
https://accounts.google.com/ServiceLogin?hl=en&passive=true&continue=http://www.google.com/
https://plus.google.com/116899029375914044550

$

-0 Output format
subs ==> sub-matches

pattern net.url_common
==> package net, pattern url_common

CUSTOMIZABLE
SYNTAX
HIGHLIGHTING

Can your ‘grep’ do this?

$ sed -n 46,49p /var/log/system.log
Jul 30 10:18:42 Jamies—-Compabler com.apple.xpc.launchd[1l] (com.apple.CoreSimulator.CoreSimulatorService
[669]): Service exited due to signal: Killed: 9 sent by com.apple.CoreSimulator.CoreSimu[669]

Jul 30 10:18:42 Jamies—-Compabler systemstats[71]: assertion failed: 17G65: systemstats + 914800 [D1E75C
38-62CE-3D77-9ED3-5F6D38EF0676] : 0x40

Jul 30 10:18:43 Jamies—Compabler ContainerMetadataExtractor[92065]: objc[92065]: Class BRMangledID is 1i
mplemented in both /System/Library/PrivateFrameworks/CloudDocs.framework/Versions/A/CloudDocs (@x7fff8b
848c88) and /System/Library/PrivateFrameworks/CloudDocsDaemon. framework/XPCServices/ContainerMetadataEx
tractor.xpc/Contents/Mac0S/ContainerMetadataExtractor (0x10a8e0528). One of the two will be used. Which
one 1s undefined.

Jul 30 10:18:50 Jamies—Compabler systemstats[71]: assertion failed: 17G65: systemstats + 914800 [D1E75C
38-62CE-3D77-9ED3-5F6D38EF0676] : 0x40

$

$ sed -n 46,49p /var/log/system.log | rosie match all.things

Jul 30 10:18:42 - com.apple.xpc. launchd[1l] (com.apple.CoreSimulator.CoreSimulatorService

[669]): : : 9 com.apple.CoreSimulator.CoreSimu[669]

Jul 30 10:18:42 - [71]: : 17G65: + 914800 [D1E/5C

38=-62CE-3D77-9ED3-5F6D38EF0676]: 0x40

Jul 30 10:18:43 - [92065]: [92065]: BRMang ledID
/System/Library/PrivateFrameworks/CloudDocs. framework/Versions/A/CloudDocs (@x7fff8b

848c88) /System/Library/PrivateFrameworks/CloudDocsDaemon. framework/XPCServices/ContainerMetadataEx

tractor.xpc/Contents/Mac0S/ContainerMetadataExtractor (0x10a8e0528).

Jul 30 10:18:50 - [71]: : 17G65: + 914800 [D1E/5C
36=62CE-3D77-9ED3-5F6D38EF0676]: 0x40

$ [

STRUCTURED

Can your ‘grep’ do this?
OUTPUT OPTION

$ head -n 1 /var/log/system.log | rosie grep -o jsonpp num.denoted_hex
{nsn: 1'
nen: 80,
"data": "Jul 29 16:17:13 Jamies—-Compabler timed[90268]: settimeofday({@x5b5e20c9,0x75bd3",
"subs":
[{IISII : 62,
nen: 72,
"data": "@x5b5e20c9",
"subs":
[{nsn: 64,
nen: 72'
"data': "5b5e20c9", w«
"type": "num.hex"}],
"type": "num.denoted_hex"},
{nsn: 73’ -
nen: 80,
"data": "@x75bd3", €— Tt
"subs": i
[{nsn: 75’
nen: 80,
"data": "75bd3", 4
"type": "num.hex"}],
"type": "num.denoted _hex"}],
lltypell: ll*ll}
$

Matching line

N,
b,
I
.....
b,
b,
I

num.denoted hex

N,y
N,y
Ny
a
.....
b,
b,
a,
b,

+ hum.hex (a sub-match)

Formal basis

Chomsky hierarch

recursively enumerable

context-sensitive

context-free

regular

Parsing Expression Grammars:
A Recognition-Based Syntactic Foundation

Bryan Ford
Massachusetts Institute of Technology
Cambridge, MA

baford@ mit.edu

Abstract

For decades we have been using Chomsky’s generative system of
grammars, particularly context-free grammars (CFGs) and regu-
lar expressions (REs), to express the syntax of programming lan-
guages and protocols. The power of generative grammars to ex-
press ambiguity is crucial to their original purpose of modelling
natural languages, but this very power makes it unnecessarily diffi-
cult both to express and to parse machine-oriented languages using
CFGs. Parsing Expression Grammars (PEGs) provide an alterna-
tive, recognition-based formal foundation for describing machine-
oriented syntax, which solves the ambiguity problem by not intro-
ducing ambiguity in the first place. Where CFGs express nondeter-
ministic choice between alternatives, PEGs instead use prioritized
choice. PEGs address frequently felt expressiveness limitations of
CFGs and REs, simplifying syntax definitions and making it un-
necessary to separate their lexical and hierarchical components. A
linear-time parser can be built for any PEG, avoiding both the com-
plexity and fickleness of LR parsers and the inefficiency of gener-
alized CFG parsing. While PEGs provide a rich set of operators for
constructing grammars, they are reducible to two minimal recogni-

1 Introduction

Most language syntax theory and practice is based on generative
systems, such as regular expressions and context-free grammars, in
which a language is defined formally by a set of rules applied re-
cursively to generate strings of the language. A recognition-based
system, in contrast, defines a language in terms of rules or predi-
cates that decide whether or not a given string is in the language.
Simple languages can be expressed easily in either paradigm. For
example, {s € a* | s = (aa)"} is a generative definition of a trivial
language over a unary character set, whose strings are “constructed”
by concatenating pairs of a’s. In contrast, {s € a* | (|s| mod 2=0)}
is a recognition-based definition of the same language, in which a
string of a’s is “accepted” if its length is even.

While most language theory adopts the generative paradigm, most
practical language applications in computer science involve the
recognition and structural decomposition, or parsing, of strings.
Bridging the gap from generative definitions to practical recogniz-
ers is the purpose of our ever-expanding library of parsing algo-
rithms with diverse capabilities and trade-offs [9].

tion schemas developed around 1970, TS/TDPL and gTS/GTDPL,
which are here proven equivalent in effective recognition power. Chomsky’s generative system of grammars, from which the ubiqui-

A Text Pattern-Matching
Tool based on Parsing
Expression Grammars

Roberto Ierusalimschy?

! PUC-Rio, Brazil

This is a preprint of an article accepted for publication in Software: Practice and Experience;
Copyright 2008 by John Willey and Sons.

SUMMARY

Current text pattern-matching tools are based on regular expressions. However, pure regular
expressions have proven too weak a formalism for the task: many interesting patterns either are
difficult to describe or cannot be described by regular expressions. Moreover, the inherent non-
determinism of regular expressions does not fit the need to capture specific parts of a match.

Motivated by these reasons, most scripting languages nowadays use pattern-matching tools that
extend the original regular-expression formalism with a set of ad-hoc features, such as greedy
repetitions, lazy repetitions, possessive repetitions, “longest match rule”, lookahead, etc. These
ad-hoc extensions bring their own set of problems, such as lack of a formal foundation and complex
implementations.

In this paper, we propose the use of Parsing Expression Grammars (PEGs) as a basis for pattern
matching. Following this proposal, we present LPEG, a pattern-matching tool based on PEGs for
the Lua scripting language. LPEG unifies the ease of use of pattern-matching tools with the full
expressive power of PEGs. Because of this expressive power, it can avoid the myriad of ad-hoc
constructions present in several current pattern-matching tools. We also present a Parsing Machine
that allows a small and efficient implementation of PEGs for pattern matching.

KEY WORDS: pattern matching, Parsing Expression Grammars, scripting languages

Formal basis

Chomsky hierarch

recursively enumerable

context-sensitive

Parsing Expression Grammars:
A Recognition-Based Syntactic Foundation

Bryan Ford
Massachusetts Institute of Technology
Cambridge, MA

baford@ mit.edu

Abstract

For decades we have been using Chomsky’s generative system of
grammars, particularly context-free grammars (CFGs) and regu-
lar expressions (REs), to express the syntax of programming lan-
guages and protocols. The power of generative grammars to ex-
press ambiguity is crucial to their original purpose of modelling
natural languages, but this very power makes it unnecessarily diffi-
cult both to express and to parse machine-oriented languages using
CFGs. Parsing Expression Grammars (PEGs) provide an alterna-
tive, recognition-based formal foundation for describing machine-
oriented syntax, which solves the ambiguity problem by not intro-
ducing ambiguity in the first place. Where CFGs express nondeter-
ministic choice between alternatives, PEGs instead use prioritized
choice. PEGs address frequently felt expressiveness limitations of
CFGs and REs, simplifying syntax definitions and making it un-
necessary to separate their lexical and hierarchical components. A
linear-time parser can be built for any PEG, avoiding both the com-
plexity and fickleness of LR parsers and the inefficiency of gener-
alized CFG parsing. While PEGs provide a rich set of operators for
constructing grammars, they are reducible to two minimal recogni-

1 Introduction

Most language syntax theory and practice is based on generative
systems, such as regular expressions and context-free grammars, in
which a language is defined formally by a set of rules applied re-
cursively to generate strings of the language. A recognition-based
system, in contrast, defines a language in terms of rules or predi-
cates that decide whether or not a given string is in the language.
Simple languages can be expressed easily in either paradigm. For
example, {s € a* | s = (aa)"} is a generative definition of a trivial
language over a unary character set, whose strings are “constructed”
by concatenating pairs of a’s. In contrast, {s € a* | (|s| mod 2=0)}
is a recognition-based definition of the same language, in which a
string of a’s is “accepted” if its length is even.

While most language theory adopts the generative paradigm, most
practical language applications in computer science involve the
recognition and structural decomposition, or parsing, of strings.
Bridging the gap from generative definitions to practical recogniz-
ers is the purpose of our ever-expanding library of parsing algo-
rithms with diverse capabilities and trade-offs [9].

tion schemas developed around 1970, TS/TDPL and gTS/GTDPL,
which are here proven equivalent in effective recognition power. Chomsky’s generative system of grammars, from which the ubiqui-

context-free

By J. Finkelstein - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=9405226

A Text Pattern-Matching
Tool based on Parsing
Expression Grammars

Roberto Ierusalimschy?

! PUC-Rio, Brazil

This is a preprint of an article accepted for publication in Software: Practice and Experience;
Copyright 2008 by John Willey and Sons.

SUMMARY

Current text pattern-matching tools are based on regular expressions. However, pure regular
expressions have proven too weak a formalism for the task: many interesting patterns either are
difficult to describe or cannot be described by regular expressions. Moreover, the inherent non-
determinism of regular expressions does not fit the need to capture specific parts of a match.

Motivated by these reasons, most scripting languages nowadays use pattern-matching tools that
extend the original regular-expression formalism with a set of ad-hoc features, such as greedy
repetitions, lazy repetitions, possessive repetitions, “longest match rule”, lookahead, etc. These
ad-hoc extensions bring their own set of problems, such as lack of a formal foundation and complex
implementations.

In this paper, we propose the use of Parsing Expression Grammars (PEGs) as a basis for pattern
matching. Following this proposal, we present LPEG, a pattern-matching tool based on PEGs for
the Lua scripting language. LPEG unifies the ease of use of pattern-matching tools with the full
expressive power of PEGs. Because of this expressive power, it can avoid the myriad of ad-hoc
constructions present in several current pattern-matching tools. We also present a Parsing Machine
that allows a small and efficient implementation of PEGs for pattern matching.

KEY WORDS: pattern matching, Parsing Expression Grammars, scripting languages

Formal basis

Chomsky hierarch

recursively enumerable

PDESEREY, T V2 T AR - AN
X e . AR,

-

edntext-sen

context-free

= e — .
Iy —
~o & - -

.- -

By J. Finkelstein - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=9405226

Rosie
Pattern

Language
and all PEG
grammars

Parsing Expression Grammars:
A Recognition-Based Syntactic Foundation

Bryan Ford
Massachusetts Institute of Technology
Cambridge, MA

baford@ mit.edu

Abstract

For decades we have been using Chomsky’s generative system of
grammars, particularly context-free grammars (CFGs) and regu-
lar expressions (REs), to express the syntax of programming lan-
guages and protocols. The power of generative grammars to ex-
press ambiguity is crucial to their original purpose of modelling
natural languages, but this very power makes it unnecessarily diffi-
cult both to express and to parse machine-oriented languages using
CFGs. Parsing Expression Grammars (PEGs) provide an alterna-
tive, recognition-based formal foundation for describing machine-
oriented syntax, which solves the ambiguity problem by not intro-
ducing ambiguity in the first place. Where CFGs express nondeter-
ministic choice between alternatives, PEGs instead use prioritized
choice. PEGs address frequently felt expressiveness limitations of
CFGs and REs, simplifying syntax definitions and making it un-
necessary to separate their lexical and hierarchical components. A
linear-time parser can be built for any PEG, avoiding both the com-
plexity and fickleness of LR parsers and the inefficiency of gener-
alized CFG parsing. While PEGs provide a rich set of operators for
constructing grammars, they are reducible to two minimal recogni-

1 Introduction

Most language syntax theory and practice is based on generative
systems, such as regular expressions and context-free grammars, in
which a language is defined formally by a set of rules applied re-
cursively to generate strings of the language. A recognition-based
system, in contrast, defines a language in terms of rules or predi-
cates that decide whether or not a given string is in the language.
Simple languages can be expressed easily in either paradigm. For
example, {s € a* | s = (aa)"} is a generative definition of a trivial
language over a unary character set, whose strings are “constructed”
by concatenating pairs of a’s. In contrast, {s € a* | (|s| mod 2=0)}
is a recognition-based definition of the same language, in which a
string of a’s is “accepted” if its length is even.

While most language theory adopts the generative paradigm, most
practical language applications in computer science involve the
recognition and structural decomposition, or parsing, of strings.
Bridging the gap from generative definitions to practical recogniz-
ers is the purpose of our ever-expanding library of parsing algo-
rithms with diverse capabilities and trade-offs [9].

tion schemas developed around 1970, TS/TDPL and gTS/GTDPL,

which are here proven equivalent in effective recognition power. Chomsky’s generative system of grammars, from which the ubiqui-

A Text Pattern-Matching
Tool based on Parsing
Expression Grammars

Roberto Ierusalimschy?

! PUC-Rio, Brazil

This is a preprint of an article accepted for publication in Software: Practice and Experience;
Copyright 2008 by John Willey and Sons.

SUMMARY

Current text pattern-matching tools are based on regular expressions. However, pure regular
expressions have proven too weak a formalism for the task: many interesting patterns either are
difficult to describe or cannot be described by regular expressions. Moreover, the inherent non-
determinism of regular expressions does not fit the need to capture specific parts of a match.

Motivated by these reasons, most scripting languages nowadays use pattern-matching tools that
extend the original regular-expression formalism with a set of ad-hoc features, such as greedy
repetitions, lazy repetitions, possessive repetitions, “longest match rule”, lookahead, etc. These
ad-hoc extensions bring their own set of problems, such as lack of a formal foundation and complex
implementations.

In this paper, we propose the use of Parsing Expression Grammars (PEGs) as a basis for pattern
matching. Following this proposal, we present LPEG, a pattern-matching tool based on PEGs for
the Lua scripting language. LPEG unifies the ease of use of pattern-matching tools with the full
expressive power of PEGs. Because of this expressive power, it can avoid the myriad of ad-hoc
constructions present in several current pattern-matching tools. We also present a Parsing Machine
that allows a small and efficient implementation of PEGs for pattern matching.

KEY WORDS: pattern matching, Parsing Expression Grammars, scripting languages

Formal basis

Chomsky hierarch

'-_—A-

-

Y- R LA e, L *

edntext-sen

By J. Finkelstein - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=9405226

Rosie
Pattern

Language
and all PEG
grammars

Parsing Expression Grammars:
A Recognition-Based Syntactic Foundation

Bryan Ford
Massachusetts Institute of Technology
Cambridge, MA

baford@ mit.edu

Abstract

For decades we have been using Chomsky’s generative system of
grammars, particularly context-free grammars (CFGs) and regu-
lar expressions (REs), to express the syntax of programming lan-
guages and protocols. The power of generative grammars to ex-
press ambiguity is crucial to their original purpose of modelling
natural languages, but this very power makes it unnecessarily diffi-
cult both to express and to parse machine-oriented languages using
CFGs. Parsing Expression Grammars (PEGs) provide an alterna-
tive, recognition-based formal foundation for describing machine-
oriented syntax, which solves the ambiguity problem by not intro-
ducing ambiguity in the first place. Where CFGs express nondeter-
ministic choice between alternatives, PEGs instead use prioritized
choice. PEGs address frequently felt expressiveness limitations of
CFGs and REs, simplifying syntax definitions and making it un-
necessary to separate their lexical and hierarchical components. A
linear-time parser can be built for any PEG, avoiding both the com-
plexity and fickleness of LR parsers and the inefficiency of gener-
alized CFG parsing. While PEGs provide a rich set of operators for
constructing grammars, they are reducible to two minimal recogni-

1 Introduction

Most language syntax theory and practice is based on generative
systems, such as regular expressions and context-free grammars, in
which a language is defined formally by a set of rules applied re-
cursively to generate strings of the language. A recognition-based
system, in contrast, defines a language in terms of rules or predi-
cates that decide whether or not a given string is in the language.
Simple languages can be expressed easily in either paradigm. For
example, {s € a* | s = (aa)"} is a generative definition of a trivial
language over a unary character set, whose strings are “constructed”
by concatenating pairs of a’s. In contrast, {s € a* | (|s| mod 2=0)}
is a recognition-based definition of the same language, in which a
string of a’s is “accepted” if its length is even.

While most language theory adopts the generative paradigm, most
practical language applications in computer science involve the
recognition and structural decomposition, or parsing, of strings.
Bridging the gap from generative definitions to practical recogniz-
ers is the purpose of our ever-expanding library of parsing algo-
rithms with diverse capabilities and trade-offs [9].

tion schemas developed around 1970, TS/TDPL and gTS/GTDPL,

which are here proven equivalent in effective recognition power. Chomsky’s generative system of grammars, from which the ubiqui-

A Text Pattern-Matching
Tool based on Parsing
Expression Grammars

Roberto Ierusalimschy?

! PUC-Rio, Brazil

This is a preprint of an article accepted for publication in Software: Practice and Experience;
Copyright 2008 by John Willey and Sons.

SUMMARY

Current text pattern-matching tools are based on regular expressions. However, pure regular
expressions have proven too weak a formalism for the task: many interesting patterns either are
difficult to describe or cannot be described by regular expressions. Moreover, the inherent non-
determinism of regular expressions does not fit the need to capture specific parts of a match.

Motivated by these reasons, most scripting languages nowadays use pattern-matching tools that
extend the original regular-expression formalism with a set of ad-hoc features, such as greedy
repetitions, lazy repetitions, possessive repetitions, “longest match rule”, lookahead, etc. These
ad-hoc extensions bring their own set of problems, such as lack of a formal foundation and complex
implementations.

In this paper, we propose the use of Parsing Expression Grammars (PEGs) as a basis for pattern
matching. Following this proposal, we present LPEG, a pattern-matching tool based on PEGs for
the Lua scripting language. LPEG unifies the ease of use of pattern-matching tools with the full
expressive power of PEGs. Because of this expressive power, it can avoid the myriad of ad-hoc
constructions present in several current pattern-matching tools. We also present a Parsing Machine
that allows a small and efficient implementation of PEGs for pattern matching.

KEY WORDS: pattern matching, Parsing Expression Grammars, scripting languages

RPL and regular expressions: similarities

RPL and regular expressions: similarities

pat?
pat+
pat* . |
pat{n} |

pat{n,m}

RPL and regular expressions: similarities

pat?
pat+
pat¥*
pat{n}
pat{n,m}

|Same syntax as regex |

[: name:]
[list]
[a-2z]

Simplified syntax from |

ame or list or |

RPL and regular expressions: similarities

pat?
pat+
pat¥*
pat{n}
pat{n,m}

[: name: |
[list]

[a-2z]

[~...]

[csl cs2 ..]

'Simplified

> pat
< pat
! pat

RPL and regular expressions: a key difference

p/ q

22

Patterns in the standard library (v1.0.0)

= Collections
— net.any, date.any, etc.
— all.things

= Commonly needed

— Int, float, hex, and other numbers
— several kinds of identifiers

— path names for Unix and Windows
— GUIDs

= Network patterns

— ip address (v4, v6, mixed), domain name,
email address, url, URI, MAC, HTTP

= [imestamps
— RFC3339, RFC2822, and more than a
dozen other common formats

= CSV data
— delimiters: , ; |
— quoted fields: “foo” or ‘bar’
— escapes: " or \" or \"\"

= JSON data

— full parse
— match nested and balanced {} []

= Source code features
— 10 popular languages

= De-structuring
- E.g. “CSC316” ==> “CSC”, “316”
- E.g. “1.2,3.77,0) ==>“1.2", “3.77", “0”

= Log files
— Syslog constituents (covers most log files)
— Java exceptions, Python tracebacks

Community

Debugging

“To err is human, but to really fc
need a computer.”

$ echo '17:30:4' | rosie match time.rfc3339
$

Trace a (mis-)match

$ echo '17:30:4' | rosie match time.rfc3339

$

$ echo '17:30:4' | rosie trace time.rfc3339
Expression: {rfc3339_time {[:space:]1}x {offset}?}
Looking at: (17:30:4) (input pos = 1)

No match

— Expression: rfc3339_time
Looking at: €17:30:4) (input pos = 1)

No match

L Expression: {hour ":" minute ":" second {secfrac}?}
Looking at: (17:30:4) (input pos = 1)
No match

— EXxpression: hour
Looking at: (17:30:4) (input pos
Matched 2 chars

— Expression: ":"

Looking at: (:30:4) (input pos = 3)

Matched 1 chars

—— EXxpression: minute

Looking at: (30:4) (input pos

Matched 2 chars

— Expression: ":"

Looking at: {:4)» (input pos

Matched 1 chars

— EXxpression: second

Looking at: {4)» (input pos = 7)

No match

L— Expression: {{[0-5] [0-91} / "60"}
Looking at: {4)» (input pos = 7)
No match

1)

4)

6)

— Expression: {[0-5] [0-9]}

Trace a (mis-)match

$ echo '17:30:4' | rosie match time.rfc3339

$:
$ echo '17:30:4' | rosie trace time.rfc3339 Trace a (mIS-)matCh

Expression: {rfc3339 _time {[:space:]}*x {offset}?}
Looking at: (17:30:4) <input pos = 1) "L-"‘--____________________.-—-.-.
No match

— Expression: rfc3339_time
Looking at: (17:30:4) (input pos = 1)

Pattern definition

No ratch Input text
L— Expression: {hour ":" minute ":" second {secfrac}?}

Looking at: (17:30:4) (input pos = 1)

No match

— Expression: hour
Looking at: (17:30:4) (input pos = 1)
Matched 2 chars
— Expression: ":"
Looking at: (:30:4) (input pos = 3)
Matched 1 chars
—— EXxpression: minute
Looking at: (30:4) (input pos = 4)
Matched 2 chars
— Expression: ":"
Looking at: (:4) (input pos = 6)
Matched 1 chars
—— EXpression: second

Looking at: {(4) (input pos = 7)
No match "-----"“~——-_________.-
L— Expression: {{[0-5] [0-91} / "60"}

Looking at: {(4) (input pos = 7)

No match
— Expression: {[0-5] [0-9]}

Failure point

Read-eval-print loop

$ rosie repl

Rosie 1.0.0-sepcomp3

Rosie> import destructure as des
Rosie> .list des.x

Name Cap? Type Color Source
[snip]

numa lpha Yes pattern default;bold destructure
parentheses Yes pattern default;bold destructure
rest Yes pattern default;bold destructure
semicolons Yes pattern default;bold destructure
sep pattern default;bold destructure
s lashes Yes pattern default;bold destructure
term Yes pattern default;bold destructure
tryall pattern default;bold destructure
~ pattern default;bold builtin/prelude

24/24 names shown
Rosie>

Rosie> .match des.tryall "(1.2; 3; 456; 7)"

{"data": "(1.2; 3; 456; 7)",
"e': 17,
IISII: 1’
"subs'':
[{"data": "(1.2; 3; 456; 7)",
||e||: 17’
llsll: 1’
""'subs'':

[{"data": "1.2; 3; 456; 7",

"e'": 16,

IISII: 2’

""'subs'':
[{"data": "1.2",
{lldatall: il 3ll,
{"data": " 456",

{Ildatall: i 7II’

"type" . lldes . flnd -*"}J ’
"type": "des.semicolons"}],

"type'": "des.parentheses"}],
Iltypell : II*II}
Rosie>

Read-eval-print loop

» Define patterns
» Try them
» Debug (trace) them

Rosie> .match des.tryall
{"data": "(1.2; 3; 456; 7)™,
Hall. 17'
||S||: 1’
""'subs"':
[{"data": "(1.2; 3; 456; 7)",
"e": 17,
"S": 1’
""'subs'':
[{"data": "1.2; 3; 456; 7",
llell: 16,
"S": 2’

: "1.2",
: 3"1

: "' 456",

: 11 7ll

"type" : "des.ftind.x"}],
"type": "des.semicolons"}],

"type" - "desg, pPa rentheSES"}] ’
"type'": "x"}
Rosie>

"(1.2; 3; 456; 7)"

Read-eval-print loop

» Define patterns
* Try them
» Debug (trace) them

Executable unit tests

———— net.rpl Rosie Pattern Language patterns for hostnames, 1p addresses, and such

package net
import num

[snip]

ipv4 = 1p_address_v4
-— test 1ipv4 accepts "0.0.0.0", "1.2.234.123", "999.999.999.,999"
—— test 1pv4 rejects "1234.1.2.3", "1.2.3", "111.222.333.", "111.222.333..444"

ipve = 1pv6_mixed / ip_address_vb6
-— test 1pv6 includes 1ipv4 "::192.9.5.5", "::FFFF:129.144.52.38"
-— test 1pv6 excludes 1ipv4 "1080::8:800:200C:417A", "2010:836B:4179::836B:4179"

Executable unit tests

$ rosie test /usr/local/lib/rosie/rpl/x.rpl
/usr/local/lib/rosie/rpl/all.rpl

all 4 tests passed
/usr/local/lib/rosie/rpl/csv.rpl

no tests found
/usr/local/lib/rosie/rpl/date.rpl

all 89 tests passed

/usr/local/lib/rosie/rpl/id.rpl :
all 51 tests passed @ Part of the documentation

/usr/local/lib/rosie/rpl/json.rpl wl Regression when making Changes
all 45 tests passed

@mcal/lib/rosie/rpl/net- rp> ¥ Use them in app build/compile stage

Ll 125 tests passed
/usr/local/lib/rosie/rpl/num. rpl
all 80 tests passed
/usr/local/lib/rosie/rpl/os.rpl
no tests found
/usr/local/lib/rosie/rpl/time.rpl
all 85 tests passed
/usr/local/lib/rosie/rpl/ts.rpl
all 27 tests passed
/usr/local/lib/rosie/rpl/word.rpl
all 20 tests passed
$

Some nol

‘| want to believe”

. "Big data” parsing (streaming and batch)

Data
___ 2 Rosie/RPL ==X %

Data ‘rce

urc
SOD te Data
e)urce

Source

1. "Big data” parsing (streaming and batch)

Data
___ Jl Rosie/RPL =N %

Data ‘rce
oLrce
S Data
Data
urce
Source

L
L
o
¢

NERARRARRRNE

H

[.
)
<
s 4

2. Mining source code repositories

= "Micro-grammar” approach:

+

How to build static checking systems using orders of g
magnitude less code by Brown, Notzli, Engler Ruby

» NCSU students:

Wrote RPL patterns to extract 6 kinds of language
features from 10 different languages

5 "
< . 4
N % .

99999
’ €
| Tt | 0

' | a

>
I ‘.‘

1. "Big data” parsing (streaming and batch)

Data
___ Jl Rosie/RPL =N %

Data ‘rce
Source Data

Data urce N - Function | Emor

Source R nguages Commerts| || \Depacdencias’\| U0 Ty | fefe ||| [Handing | Lkercts! || Badkaet Bodies
. _ . . Java _--- v " --
2. Mining source code repositories ====--m_
= “Micro-grammar” approach: ---====

Python ---

How to build static checking systems using orders of B | v | ViEVAIAL Vi RN
magnitude less code by Brown, Notzli, Engler _----i-
. NCSU students: e | v « SRR SN
| e | v | v [EVAIREIEE VRN D
Wrote RPL patterns to extract 6 kinds of language =Nyl IS RSN BO2N B2 DO B
features from 10 different languages THEVARRYAR | Rz

3. Secure engineering principle: Parse everything!

The most critical risk in every OWASP report since 2003: Injection attacks (unvalidated input)
Best practice: Whitelist valid input, which requires parsing every input

Using Rosie in programs: Python example

ount the non-blank

)

es of code).

import rosie
engine = rosie.engine()
source_line, errs = engine.compile(bytes('!{[:space:]*x "' + comment_start + ""/$}'))

[snipped: error check]

def is source(line):

1f not line: return False
match, leftover, abend, t@, tl1 = engine.match(source_line, bytes(line), 1, b"bool")

return match and True or False

def count(f):
count = 0

for line in f:
if is _source(line): count += 1

return count
[snip]

Using Rosie in programs: Python example

ount the non-blank

)

es of code).
import rosie '
ENQINE = FOSIE.ENQIiNe () Erm——— 1. Get engine
engine.compile(bytes('!{[:space:]x "' + comment_start + '"/$}'))

source_Lline, errs =
[snipped: error check]

def is source(line):

1f not line: return False
match, leftover, abend, t@, tl1 = engine.match(source_line, bytes(line), 1, b"bool")

return match and True or False

def count(f):
count = 0

for line in f:
if is _source(line): count += 1

return count

[snip]

Using Rosie in programs: Python example

ount the non-blank

es of code).

import rosie '
rosie.engine() ———————————————————————— 1. Get erngine

engine =
engine.compile(bytes('!{[:space:]x "' + comment_start + '"/$}'))

source_Lline, errs =
[snipped: error check]
def is source(line): > Compi/e RP/

1f not line: return False
match, leftover, abend, t®, tl1l = engine.match(source_line, bytes(line), 1, b"bool")

return match and True or False

def count(f):
count = 0

for line in f:
if is _source(line): count += 1

return count

[snip]

Using Rosie in programs: Python example

ount the non-blank

es of code).

import rosie '
rosie.engine() ———————————————————————— 1. Get erngine

engine =
engine.compile(bytes('!{[:space:]x "' + comment_start + '"/$}'))

source_Lline, errs =
[snipped: error check]
def is source(line): > Compi/e RP/

1f not line: return False
match, leftover, abend, t®, tl1l = engine.match(source_line, bytes(line), 1, b"bool")

return match and True or False

def count(f):
count = 0

for line in f:
if is _source(line): count += 1
return count 3 Match

[snip]

Using Rosie in programs: Improvements coming, and help wanted

[Toda :J e m
y @ python™ . | GO

PROGRAMMING > {
LANGUAGE

Once and future

ﬂOdQ Ruby) Java

. Clojure

PRO GRAMMING

Language

Total time (seconds)

250.00

225.00

200.00

175.00

150.00

125.00

100.00

75.00

50.00

25.00

0.00

® rosie -0 json

® rosie_dev
grok/ruby
+ grok/jruby

-0 json GrO k/ru by

Failed with utf8 error
before finishing

Grok/jruby

Failed with utf8 error
before finishing

1,000,000 2,000,000 3,000,000 4,000,000
Number of input lines (syslog)

Performance

Worse

Rosie 1.0.0 \7

Better
" Notes: h
1. Log entry parsing is one narrow use case.
2. Hard to design fair comparisons.
3. Rosie output is nested JSON; Grok output
. isflat lists. Dy

Roadmacg

“If you want to go fast, go alone.
If you want to go far, go together.”

Roadmap

- -
e . R e i

-

Roadmap

Extensibility
Pattern generation User-written macros
Algorithmic, e.g. from static analysis User-written output encoders

Statistical / ML

Command line/scripting convenience
Traverse directories
Follow links or not, etc.

Compiler Optimizations

Common subexpression elimination
New vm instructions

Flow analysis

Regex-to-rosie converter
Re-use existing regex —
Give them unit tests " Ahead of time compilation

Debug them e ' Fast startup
— Small matching run-time (~50Kb binary)

Join the Rosie user community!

%}% Contribute Patterns T Write Tools

Implement features

« Domain-specific » Package info « Optimizations
= Authoritative = Better trace (compact) = Language-specific libs

» E.g. from RFC . Linter » Improve or create
= Non-English patterns! » Notebook (Jupyter?) » Python, R, Go, Java, ...

. - . . = User-written extensions
= "Looks like” (recognizers) « Integrations

. » Output encoders
« Byte-encoded data? » scikit-learn . Macros
» Spark

» Character sets

Join the Rosie user community!
Or: brew install rosie

g Or: pip install rosie
%}% Contribute Patterns T Write Tools

Implement features

« Domain-specific » Package info « Optimizations
= Authoritative = Better trace (compact) = Language-specific libs

» E.g. from RFC . Linter » Improve or create
= Non-English patterns! » Notebook (Jupyter?) » Python, R, Go, Java, ...

. - . . = User-written extensions
= "Looks like” (recognizers) « Integrations

. » Output encoders
« Byte-encoded data? » scikit-learn . Macros
» Spark

» Character sets

Conclusion

Conclusion

2017 MONTHLY PLANNING CALENDAR

JANUARY RCH YEARLY GOALS

AUGUST

[Mar 2006
w7 [we [wa w10 [wi1

Name

¢ Planning and Control
) Business plan identifying project.|
) Define project objective and infor...
| &) Identify industry standards for pr. P
[¥) Develop preliminary conceptual ...| ptaffing
) Initial planning complete

+ Dev time:

v library of patterns you don’t have to write

v new patterns composed of existing patterns
+ Run time: matching performance very good

) Develop strategy | strategy
&) Develop model an... Jt model and staff plan
¢ Site Assessment |
) Identify potential sites [T Idertfy petential stes

) Define Define infrastructure requirements
" (7) Define ublty needs
) Identity project site
) Assess regulatory and environm..|
&) 1dentity
) Recommend site
¥ Site and planning review
9 Scope Definition
! ¥ Develop general scope for proje. pe T project objectives
[¥) Evaluate project needs, develop .| [l Evahate project needs, develop major study list
& startmajor studies i Start major studies
&) Complete major studies and ma.., Complete mafor studies and make recommendations
¥) Develop specific scope —{) Develop specific scope
& Prepare final hedulg g T
) Provide written scope
| ¢ Discipline Support
) Create list
) Stant fow sheets and design crit
[Start discipline-specific drawing...|
) Start conceptual layout
! @) Complete flow sheets and desig. {
¥ Complete discipline-specific dra.
¥ Complete conceptual layout
|| ¢ Conceptual Phase Completion |
| ﬁ'mnam £ane and e

0|3 I I I D

Define utility needs

Idertfy project site

Assass regulatory and impacts
Identify permitting requirements

Create deliverables list

and design criterig
Start dischline-specific drawings and equipmy
Start condeptual layout

IeT

Conclusion

Faster
+ Dev time:
v library of patterns you don’t have to write
v new patterns composed of existing patterns
+ Run time: matching performance very good

Better

+ shareable libraries
+ conformance to RFCs
+ readable syntax, and strict semantics (and no flags)

2017 MONTHLY PLANNING C

ALENDAR

MARCH

APRIL

+ plays well with DevOps tools (git/diff, package management, unit tests)

Faster
+ Dev time:

Conclusion

v library of patterns you don’t have to write
v new patterns composed of existing patterns
+ Run time: matching performance very good

Better

+ shareable libraries
+ conformance to RFCs

+ readable syntax, and strict semantics (and no flags)

+ plays well with DevOps tools (git/diff, package management, unit tests)

Cheaper

+ ROl in reduced development and maintenance costs

+ And, it's free open source software (MIT license)

2017 MONTHLY PLANNING CALENDAR

Jenkins Q) glt

Laney

Travis CI

o0
=

ster
t

Product '
Enl;beléﬁed D

-

O Quali

%\)Aulti-'[ite): £ > Systems ol‘r',ljtegration
Security &~ O a Verification €G- Devices

Implementation &y ..: o0

ProgrammingEs 1 00Is
. M 3 Language

DeS| nDeveIopment O-J;EJ Program

Multi-core Analysis QE

Optimization :
Lires HybrigModeling

INUOUS
€S

ment

0Cesses
nt

Additional slides for
reference

Rosie Pattern Language features Rodie Pattern Language

« Pattern libraries

- Standard library
- Community libraries (e.g. GitHub)
- User libraries

= Output formats

- Colorized text for humans

- JSON for programs

- Full lines or just matches (like grep)
- And others...

= Development tools

- Command line interface, read/eval/print loop
- Trace output

- Unit tests (automated)

- Packages (shareable)

= Built for big data (but can be used like grep)

Formal basis:

o 4 Parser combinators
- Readable, maintainable 4 Based on Parsing Exp. Grammars

- Works well with git/diff, pipelines (unit tests), dependency mgmt + Linear-time in input size: O(n)
4+ Not a “packrat” implementation

The formal basis of RPL

= Rosie’s operators are parser combinators
— Based on Parsing Expression Grammars

— Not CFG (slow!) or regex (limited!)

— Express all deterministic (unambiguous) CFLs
— And some non-CFLs, e.g. anbncn

— Key advantage: accept recursive structures

= PEGs [Ford, 2004]
— “Scanner-less parsing”
— Linear time matching
— Languages recognized by PEGs are
= A superset of regular languages
= All languages recognized by LL(k) and LR(k) parsers

= LPEG library [lerusalimschy, 2008]
= (Gives a space-efficient PEG matching algorithm
= |_inear time in input size

Parsing Expression Grammars:
A Recognition-Based Syntactic Foundation

Bryan Ford
Massachusetts Institute of Technology
Cambridge, MA

A Text Pattern-Matching
Tool based on Parsing
Expression Grammars

Roberto Ierusalimschy!

! PUC-Rio, Brazil

This is a preprint of an article accepted for publication in Software: Practice and Experience;
Copyright 2008 by John Willey and Sons.

SUMMARY

Current text pattern-matching tools are based on regular expressions. However, pure regular
expressions have proven too weak a formalism for the task: many interesting patterns either are
difficult to describe or cannot be described by regular expressions. Moreover, the inherent non-
determinism of regular expressions does not fit the need to capture specific parts of a match.

Motivated by these reasons, most scripting languages nowadays use pattern-matching tools that
extend the original regular-expression formalism with a set of ad-hoc features, such as greedy
repetitions, lazy repetitions, possessive repetitions, “longest match rule”, lookahead, etc. These
ad-hoc extensions bring their own set of problems, such as lack of a formal foundation and complex
implementations.

In this paper, we propose the use of Parsing Expression Grammars (PEGs) as a basis for pattern
matching. Following this proposal, we present LPEG, a pattern-matching tool based on PEGs for
the Lua scripting language. LPEG unifies the ease of use of pattern-matching tools with the full
expressive power of PEGs. Because of this expressive power, it can avoid the myriad of ad-hoc
constructions present in several current pattern-matching tools. We also present a Parsing Machine
that allows a small and efficient implementation of PEGs for pattern matching.

KEY WORDS: pattern matching, Parsing Expression Grammars, scripting languages

|sed on generative
free grammars, in
f rules applied re-
recognition-based
of rules or predi-
If in the language.
er paradigm. For
finition of a trivial
are “constructed”
| (|s| mod 2=0)}
guage, in which a

ve paradigm, most
ience involve the
arsing, of strings.
practical recogniz-
y of parsing algo-

which the ubiqui-
expressions (REs)
for modelling and
heir elegance and
nerative grammars
ell. The ability of
tant and powerful
power gets in the
\anguages that are
iguity in CFGs is

Rosie’s matching engine is an

enhanced version of LPEG

Architecture

INPUT
(DATA)

RPL
(pattern source)

Rosie
compiler

v

Rosie
run-time

Compiler, run-time, std lib total ~500 KB on disk

-

User
libraries

-

Standard
libraries

OUTPUT

~

RPL

ArCh |te Ctu e (pattern source)

User
libraries

Parsing (Rosie!)

| _ w '
. Macro expansion | ,
= Syntax expansion | |
- Compiler | | Sl_t;md.ard
Binary output . , ibraries
it \ Rosie |
| compiler I
' '
' '
' '
| ¢ [
' '
' '
| I [
(DATA) Hosie ouTPUT
. run-time :
' |
' |

Compiler, run-time, std lib total ~500 KB on disk

RPL

ArCh |te CtU re (pattern source)

User |
libraries

Standard |
libraries

| Parsing (Rosie!)

: ‘ |
' Macro expansion I
= Syntax expansion | I
- Compiler

j I
| Binary oulp \ Rosie :
| compiler I
Matching VM : l
' Based on LPEG ‘L |
N S | I
I
| [
INPUT ! Rosie !
OUTPUT
(L) ; run-time |
I I
I I

Compiler, run-time, std lib total ~500 KB on disk

RPL

ArCh |te CtU re (pattern source)

User
libraries

Parsing (Rosie!)

' Macro expansion |
= Syntax expansion |

!
!
* |
- Compiler | |
- \ Rosie
! compiler
|
| |
| !
~ !
!
!
!
!

Standard
libraries

| Binary output
Matching VM

" Based on LPEG

v

Rosie
run-time

INPUT

(DATA) OUTPUT

Compiler, run-time, std lib total ~500 KB on disk

RPL Compiler ~ 5k sloc, Lua + Requires 1iblua. a (330 KB)
Rosie Engine << 1k sloc, Lua + Requires 1iblua. a (330 KB)
~ 3k sloc, C + Requires cjson.so (50KB)

Rosie CLI, REPL < 1k sloc, Lua + Requires readline. so (from user)

Cool ideas (i.e. future work)

~INPUT
(DATA)

|

run-time

£
RPL - -
(pattern source) User
I libraries
! l ,
| I -
' < G
andar
|
' : i libraries
| Rosie : ——
! compiler |
. I
! I
! I
! I
. | ,
! I
| .
ROSIe : OUTPUT

Pattern
Generators

Cool ideas (i.e. future work)

Pattern
f/ Generators
(1) Some possible generators."

RPL
User

(pattern source)

. Standard
. libraries
Rosie

compiler

v

Rosie
run-time

OUTPUT

INPUT
::>’ (DATA)

4

~_

Cool ideas (i.e. future work)

K/ (1) Some possible generators."

RPL
(pattern source)

Rosie
compiler

v

Rosie
run-time

INPUT
(DATA)

)

o

Pattern
Generators

User
libraries

4

Standard
| libraries
!

% (2) Some possible optimizations:

Rosie is self-hosting

= Rosle Is a parser, and Rosie Is used to parse Rosie Pattern Language
= About 110 lines of RPL (core) to define the RPL
= Could support multiple versions of RPL, even different dialects

= Non-trivial user extensions to RPL can be enabled by:
— Specifying RPL for the extension (to RPL)
— Writing a compiler “plug-in” for the extension
— The compiler plug-in interface has not yet been designed... hint!

$ rosie match -o 1line '!{[:space:]1*%$} !{[:space:]1* "--"}'" rpl 1 1.rpl | wcC
111 652 4155

