
Jamie A. Jennings, Ph.D.
Department of Computer Science
NC State University
27 September 2018

Rosie Pattern Language:
Improving on 50-Year Old Regular Expression Technology

On the interwebs:
@jamietheriveter

http://rosie-lang.org
https://gitlab.com/rosie-pattern-language

http://twitter.com/jamietheriveter
http://twitter.com/jamietheriveter
http://tiny.cc/rosie
http://tiny.cc/rosie
http://rosie-lang.org

Meanwhile…

https://www.csc.ncsu.edu
http://www.ibm.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://gitlab.com

Raison d'être

1. My team at IBM had to write lots of regex
2. We found that regex technology does not scale

- # patterns
- # people
- data size

3. So I designed Rosie Pattern Language
4. Which I’ll describe and show
5. Concluding with a roadmap, and how you can get involved

IBM Cloud DevOps Insights

Continuous Delivery Continuous Availability Continuous Security
Speed with Control Always On

with Automated Ops
Protect & Defend

DevOps Insights

Open Toolchain

bluemix.net/devops

IBM Cloud DevOps Insights

Continuous Delivery Continuous Availability Continuous Security
Speed with Control Always On

with Automated Ops
Protect & Defend

DevOps Insights

Open Toolchain

bluemix.net/devops

IBM Cloud DevOps Insights

Continuous Delivery Continuous Availability Continuous Security
Speed with Control Always On

with Automated Ops
Protect & Defend

DevOps Insights

Open Toolchain

bluemix.net/devops

Estimates are that less than 0.5%
of data is ever analyzed!

Antonio Regalado,
MIT Technology Review

Planet-wide

“Every day, we create 2.5 quintillion
 bytes of data”

IBM

Estimates are that less than 0.5%
of data is ever analyzed!

Antonio Regalado,
MIT Technology Review

Planet-wide

“Every day, we create 2.5 quintillion
 bytes of data”

IBM

Estimates are that less than 0.5%
of data is ever analyzed!

Antonio Regalado,
MIT Technology Review

Planet-wide

“Every day, we create 2.5 quintillion
 bytes of data”

IBM

1. Get data

2. Write code/
expressions to

parse data

3. Test and correct
parser

4. Annotate data
with semantic tags

5. Write code to
normalize values

6. Write code to
correlate entries

7. Calculate meta-
data (enumerations,

ranges, etc.)

8. Analyze data!

Estimates are that less than 0.5%
of data is ever analyzed!

Antonio Regalado,
MIT Technology Review

Planet-wide

“Every day, we create 2.5 quintillion
 bytes of data”

IBM

1. Get data

2. Write code/
expressions to

parse data

3. Test and correct
parser

4. Annotate data
with semantic tags

5. Write code to
normalize values

6. Write code to
correlate entries

7. Calculate meta-
data (enumerations,

ranges, etc.)

8. Analyze data!

Rosie

Current approaches
“If the only tool you have is a hammer…”

 Abraham Maslow

Regular expressions as tools:

grep -v “^#\|^’\|^\/\/”
egrep -o '((\d{1,3})([.]\d{1,3}){2}|\w+([.]\w+)+)'
sed -e ':a' -e 'N' -e '$!ba' -e 's/\n/ /g'

On the command line:

Regular expressions as tools:

grep -v “^#\|^’\|^\/\/”
egrep -o '((\d{1,3})([.]\d{1,3}){2}|\w+([.]\w+)+)'
sed -e ':a' -e 'N' -e '$!ba' -e 's/\n/ /g'

On the command line:

Regular expressions

Match an email address (obviously!):

^((?>[a-zA-Z\d!#$%&'*+\-/=?^_`{|}~]+\x20*|"((?
=[\x01-\x7f])[^"\\]|\\[\x01-\x7f])*"\x20*)*(?
<angle><))?((?!\.)(?>\.?[a-zA-Z\d!#$%&'*+\-/=?
^_`{|}~]+)+|"((?=[\x01-\x7f])[^"\\]|\\[\x01-
\x7f])*")@(((?!-)[a-zA-Z\d\-]+(?<!-)\.)+[a-zA-Z]
{2,}|\[(((?(?<!\[)\.)(25[0-5]|2[0-4]\d|[01]?\d?
\d)){4}|[a-zA-Z\d\-]*[a-zA-Z\d]:((?=[\x01-\x7f])
[^\\\[\]]|\\[\x01-\x7f])+)\])(?(angle)>)$

Match a date with slashes, like 1/1/1970:

^\d{1,2}\/\d{1,2}\/\d{4}$

Regular expressions

Match an email address (obviously!):

^((?>[a-zA-Z\d!#$%&'*+\-/=?^_`{|}~]+\x20*|"((?
=[\x01-\x7f])[^"\\]|\\[\x01-\x7f])*"\x20*)*(?
<angle><))?((?!\.)(?>\.?[a-zA-Z\d!#$%&'*+\-/=?
^_`{|}~]+)+|"((?=[\x01-\x7f])[^"\\]|\\[\x01-
\x7f])*")@(((?!-)[a-zA-Z\d\-]+(?<!-)\.)+[a-zA-Z]
{2,}|\[(((?(?<!\[)\.)(25[0-5]|2[0-4]\d|[01]?\d?
\d)){4}|[a-zA-Z\d\-]*[a-zA-Z\d]:((?=[\x01-\x7f])
[^\\\[\]]|\\[\x01-\x7f])+)\])(?(angle)>)$

Match a date with slashes, like 1/1/1970:

^\d{1,2}\/\d{1,2}\/\d{4}$

Rosie Pattern Language

Regular expressions

Match an email address (obviously!):

^((?>[a-zA-Z\d!#$%&'*+\-/=?^_`{|}~]+\x20*|"((?
=[\x01-\x7f])[^"\\]|\\[\x01-\x7f])*"\x20*)*(?
<angle><))?((?!\.)(?>\.?[a-zA-Z\d!#$%&'*+\-/=?
^_`{|}~]+)+|"((?=[\x01-\x7f])[^"\\]|\\[\x01-
\x7f])*")@(((?!-)[a-zA-Z\d\-]+(?<!-)\.)+[a-zA-Z]
{2,}|\[(((?(?<!\[)\.)(25[0-5]|2[0-4]\d|[01]?\d?
\d)){4}|[a-zA-Z\d\-]*[a-zA-Z\d]:((?=[\x01-\x7f])
[^\\\[\]]|\\[\x01-\x7f])+)\])(?(angle)>)$

Match a date with slashes, like 1/1/1970:

^\d{1,2}\/\d{1,2}\/\d{4}$

Rosie Pattern Language

namespace!

Regex issue #1: Notoriously hard to read & maintain

▪ Dense, cryptic syntax

▪ Semantics vary across implementations

▪ Flags that affect the semantics are not part of the pattern

▪ Regex do not easily compose

“Some people, when confronted with a problem, think
 ‘I know, I'll use regular expressions.’
 Now they have two problems.”

Jamie Zawinski
http://regex.info/blog/2006-09-15/247

http://regex.info/blog/2006-09-15/247
http://regex.info/blog/2006-09-15/247
http://regex.info/blog/2006-09-15/247

Regex issue #1: Notoriously hard to read & maintain

▪ Dense, cryptic syntax

▪ Semantics vary across implementations

▪ Flags that affect the semantics are not part of the pattern

▪ Regex do not easily compose

“Some people, when confronted with a problem, think
 ‘I know, I'll use regular expressions.’
 Now they have two problems.”

Jamie Zawinski
http://regex.info/blog/2006-09-15/247

RPL syntax looks like a programming language.

→ Patterns can be named
→ Whitespace, comments, simplified operators

RPL expressions compose.

→ Enables encapsulation and packages of patterns

http://regex.info/blog/2006-09-15/247
http://regex.info/blog/2006-09-15/247
http://regex.info/blog/2006-09-15/247

Regex issue #2: Performance is highly variable

Regular expression matching can be very efficient:
linear time in the size of the input.

“The worst-case exponential-time backtracking strategy
[is] used almost everywhere [but grep and RE2], including
ed, sed, Perl, PCRE, and Python.”

(Russ Cox https://swtch.com/~rsc/regexp/regexp2.html)

https://swtch.com/~rsc/regexp/regexp2.html)
https://swtch.com/~rsc/regexp/regexp2.html)
https://swtch.com/~rsc/regexp/regexp2.html)

Regex issue #2: Performance is highly variable

Matching this $re against a 94-character input takes around 65 seconds
in Perl*

$re = “^(.*?,){29}Gold”;
$input = “1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,
Bronze,Bronze,Gold,Silver”;

(*) Perl 5.16.3 darwin-thread-multi-2level

Regex issue #2: Performance is highly variable

Matching this $re against a 94-character input takes around 65 seconds
in Perl*

$re = “^(.*?,){29}Gold”;
$input = “1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,
Bronze,Bronze,Gold,Silver”;

(*) Perl 5.16.3 darwin-thread-multi-2level

In RPL, expressions are greedy and possessive.

→ Backtracking is explicit
→ To get exponential backtracking, you write it that way

RPL makes it difficult to be accidentally inefficient.

Issue #3: Regex collections? Grok does this. Others?

Issue #3: Regex collections? Grok does this. Others?

Issue #3: Regex collections? Grok does this. Others?

Caveats
✦ Name collisions? Some versions will use the first seen, some the last
✦ No packages, hierarchy, or dependencies
✦ They are still unreadable and unmaintainable!

Still cryptic, and they don’t play well with dev tools

Still cryptic, and they don’t play well with dev tools

RPL is designed like a programming language.

→ It reads like code
→ It diffs like code
→ It debugs like code
→ It tests like modular code

Rosie Pattern Language
“All progress depends on the unreasonable [woman]”

George Bernard Shaw, paraphrased

RPL

RPL

Comments

Modules

Identifie
rs

White
sp

ace

Quoted lite
rals

Macro
s

(not s
hown)Unit t

ests

Can your ‘grep’ do this? Named patterns

Can your ‘grep’ do this? Named patterns

Can your ‘grep’ do this? Named patterns

Can your ‘grep’ do this? Named patterns

Can your ‘grep’ do this? Named patterns

Can your ‘grep’ do this?

-o Output format

 subs ==> sub-matches

pattern net.url_common
 ==> package net, pattern url_common

Named patterns

Can your ‘grep’ do this?
Customizable
syntax
highlighting

Matching line

num.denoted_hex

num.hex (a sub-match)

Structured
output option

Can your ‘grep’ do this?

Chomsky hierarchy

Formal basis

By J. Finkelstein - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=9405226

Regular
Expressions
(strict)

Chomsky hierarchy

Formal basis

By J. Finkelstein - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=9405226

Rosie
Pattern
Language
(and all PEG
grammars)

Regular
Expressions
(strict)

Chomsky hierarchy

Formal basis

By J. Finkelstein - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=9405226

Rosie
Pattern
Language
(and all PEG
grammars)

Regular
Expressions
(strict)

Chomsky hierarchy

Open
Question:
PEG > CFG

Formal basis

RPL and regular expressions: similarities

RPL and regular expressions: similarities

Same syntax as regex • RPL is greedy

• RPL is possessive

pat?
pat+
pat*
pat{n}
pat{n,m}

RPL and regular expressions: similarities

Same syntax as regex • RPL is greedy

• RPL is possessive

pat?
pat+
pat*
pat{n}
pat{n,m}

[:name:]
[list]
[a-z]
[^…]
[cs1 cs2 …]

Simplified syntax from
regex

• RPL requires escaping of

[] - ^

• RPL allows one name or list or
range at a time:

[a-z123] not allowed

RPL and regular expressions: similarities

Same syntax as regex • RPL is greedy

• RPL is possessive

pat?
pat+
pat*
pat{n}
pat{n,m}

[:name:]
[list]
[a-z]
[^…]
[cs1 cs2 …]

Simplified syntax from
regex

• RPL requires escaping of

[] - ^

• RPL allows one name or list or
range at a time:

[a-z123] not allowed

> pat
< pat
! pat

Simplified syntax from
regex

• Compare to:

(?=(pat))
(?<=(pat))

RPL and regular expressions: a key difference

p / q “Choice” is different:

RPL uses ordered choice, like other PEG grammars.
Meaning: First try p. If p fails, backtrack and try q.

Choices are possessive.

Patterns in the standard library (v1.0.0)

▪ Collections
– net.any, date.any, etc.
– all.things

▪ Commonly needed
– int, float, hex, and other numbers
– several kinds of identifiers
– path names for Unix and Windows
– GUIDs
▪ Network patterns

– ip address (v4, v6, mixed), domain name,
email address, url, URI, MAC, HTTP

▪ Timestamps
– RFC3339, RFC2822, and more than a

dozen other common formats

▪ CSV data
– delimiters: , ; |
– quoted fields: “foo” or ‘bar’
– escapes: "" or \" or \"\"
▪ JSON data

– full parse
– match nested and balanced {} []

"22

▪ Source code features
– 10 popular languages

▪ De-structuring
– E.g. “CSC316” ==> “CSC”, “316”
– E.g. “(1.2, 3.77, 0)” ==> “1.2”, “3.77”, “0”

▪ Log files
– Syslog constituents (covers most log files)
– Java exceptions, Python tracebacks

C
om

m
un

ity

Debugging
“To err is human, but to really foul things up you

need a computer.”

 Paul R. Ehrlich

Trace a (mis-)match

Trace a (mis-)match

Pattern definition
Input text

Failure point

Trace a (mis-)match

Read-eval-print loop

Read-eval-print loop

• Define patterns

• Try them

• Debug (trace) them

Read-eval-print loop

• Define patterns

• Try them

• Debug (trace) them

Executable unit tests

Executable unit tests

Part of the documentation

Regression when making changes

Use them in app build/compile stage

Some non-CLI use cases
“I want to believe” Fox Mulder, FBI

1. “Big data” parsing (streaming and batch)

W
or

k
in

 p
ro

gr
es

s

1. “Big data” parsing (streaming and batch)

2. Mining source code repositories
▪ “Micro-grammar” approach:

How to build static checking systems using orders of
magnitude less code by Brown, Nötzli, Engler

▪ NCSU students:

Wrote RPL patterns to extract 6 kinds of language
features from 10 different languages

3. Secure engineering principle: Parse everything!
The most critical risk in every OWASP report since 2003: Injection attacks (unvalidated input)
Best practice: Whitelist valid input, which requires parsing every input

W
or

k
in

 p
ro

gr
es

s

1. “Big data” parsing (streaming and batch)

2. Mining source code repositories
▪ “Micro-grammar” approach:

How to build static checking systems using orders of
magnitude less code by Brown, Nötzli, Engler

▪ NCSU students:

Wrote RPL patterns to extract 6 kinds of language
features from 10 different languages

Using Rosie in programs: Python example

Task

Given a string indicating start of a line comment, count the non-blank
non-comment lines (i.e. lines of code).

[snip]

Using Rosie in programs: Python example

Task

Given a string indicating start of a line comment, count the non-blank
non-comment lines (i.e. lines of code).

1. Get engine

[snip]

Using Rosie in programs: Python example

Task

Given a string indicating start of a line comment, count the non-blank
non-comment lines (i.e. lines of code).

1. Get engine

2. Compile RPL

[snip]

Using Rosie in programs: Python example

Task

Given a string indicating start of a line comment, count the non-blank
non-comment lines (i.e. lines of code).

3. Match

1. Get engine

2. Compile RPL

[snip]

Using Rosie in programs: Improvements coming, and help wanted

Today:

Once and future:

Performance
Worse

Better

Grok/ruby

Grok/jruby

Rosie 1.0.0

Notes:

1. Log entry parsing is one narrow use case.

2. Hard to design fair comparisons.

3. Rosie output is nested JSON; Grok output

is flat lists.

Roadmap & Community
“If you want to go fast, go alone.
 If you want to go far, go together.”
 “Proverb”

Roadmap

Roadmap

Extensibility
User-written macros

User-written output encoders

Command line/scripting convenience
Traverse directories

Follow links or not, etc.

Compiler Optimizations
Common subexpression elimination

New vm instructions

Flow analysis

Pattern generation
Algorithmic, e.g. from static analysis

Statistical / ML

Ahead of time compilation
Fast startup

Small matching run-time (~50Kb binary)

Regex-to-rosie converter
Re-use existing regex

Give them unit tests

Debug them

Implement features
▪ Optimizations
▪ Language-specific libs
‣ Improve or create
‣ Python, R, Go, Java, …
▪ User-written extensions
‣ Output encoders
‣ Macros
‣ Character sets

Write Tools
▪ Package info
▪ Better trace (compact)
▪ Linter
▪ Notebook (Jupyter?)
▪ Integrations
‣ scikit-learn
‣ Spark

git clone …
make;
make install (optional)

Contribute Patterns
▪ Domain-specific
▪ Authoritative
‣ E.g. from RFC
▪ Non-English patterns!
▪ “Looks like” (recognizers)
▪ Byte-encoded data?

Join the Rosie user community!

Implement features
▪ Optimizations
▪ Language-specific libs
‣ Improve or create
‣ Python, R, Go, Java, …
▪ User-written extensions
‣ Output encoders
‣ Macros
‣ Character sets

Write Tools
▪ Package info
▪ Better trace (compact)
▪ Linter
▪ Notebook (Jupyter?)
▪ Integrations
‣ scikit-learn
‣ Spark

git clone …
make;
make install (optional)

Contribute Patterns
▪ Domain-specific
▪ Authoritative
‣ E.g. from RFC
▪ Non-English patterns!
▪ “Looks like” (recognizers)
▪ Byte-encoded data?

Join the Rosie user community!

Or: brew install rosie

Or: pip install rosie

Conclusion

Conclusion

Faster
✦ Dev time:
✓ library of patterns you don’t have to write
✓new patterns composed of existing patterns

✦ Run time: matching performance very good

Conclusion

Faster
✦ Dev time:
✓ library of patterns you don’t have to write
✓new patterns composed of existing patterns

✦ Run time: matching performance very good

Better
✦ shareable libraries
✦ conformance to RFCs
✦ readable syntax, and strict semantics (and no flags)
✦ plays well with DevOps tools (git/diff, package management, unit tests)

Conclusion

Faster
✦ Dev time:
✓ library of patterns you don’t have to write
✓new patterns composed of existing patterns

✦ Run time: matching performance very good

Better
✦ shareable libraries
✦ conformance to RFCs
✦ readable syntax, and strict semantics (and no flags)
✦ plays well with DevOps tools (git/diff, package management, unit tests)

Cheaper
✦ ROI in reduced development and maintenance costs
✦ And, it’s free open source software (MIT license)

Thank you!

Additional slides for
reference

Rosie Pattern Language features
▪Pattern libraries
– Standard library
– Community libraries (e.g. GitHub)
– User libraries
▪Output formats
– Colorized text for humans
– JSON for programs
– Full lines or just matches (like grep)
– And others…

▪Development tools
– Command line interface, read/eval/print loop
– Trace output
– Unit tests (automated)
– Packages (shareable)

▪Built for big data (but can be used like grep)
– Readable, maintainable
– Works well with git/diff, pipelines (unit tests), dependency mgmt

Formal basis:
✦ Parser combinators
✦ Based on Parsing Exp. Grammars

✦ Linear-time in input size: O(n)
✦ Not a “packrat” implementation

The formal basis of RPL
▪ Rosie’s operators are parser combinators

– Based on Parsing Expression Grammars
– Not CFG (slow!) or regex (limited!)
– Express all deterministic (unambiguous) CFLs
– And some non-CFLs, e.g. anbncn

– Key advantage: accept recursive structures

▪ PEGs [Ford, 2004]
– “Scanner-less parsing”
– Linear time matching
– Languages recognized by PEGs are
▪ A superset of regular languages
▪ All languages recognized by LL(k) and LR(k) parsers

▪ LPEG library [Ierusalimschy, 2008]
➡Gives a space-efficient PEG matching algorithm
➡ Linear time in input size

Rosie’s matching engine is an
enhanced version of LPEG

Architecture

Compiler, run-time, std lib total ~500 KB on disk

Architecture

Parsing (Rosie!)

Macro expansion

Syntax expansion

Compiler

Binary output

Compiler, run-time, std lib total ~500 KB on disk

Architecture

Parsing (Rosie!)

Macro expansion

Syntax expansion

Compiler

Binary output

Matching VM

Based on LPEG

Compiler, run-time, std lib total ~500 KB on disk

Architecture

Parsing (Rosie!)

Macro expansion

Syntax expansion

Compiler

Binary output

Matching VM

Based on LPEG

RPL Compiler ~ 5k sloc, Lua + Requires liblua.a (330 KB)
Rosie Engine << 1k sloc, Lua

 ~ 3k sloc, C
+ Requires liblua.a (330 KB)

+ Requires cjson.so (50KB)

Rosie CLI, REPL < 1k sloc, Lua + Requires readline.so (from user)

Compiler, run-time, std lib total ~500 KB on disk

Cool ideas (i.e. future work)

Cool ideas (i.e. future work)

Algorithmic

• Regex to RPL

• App config to RPL

• Format str to RPL

Statistical/ML

• Learn from sample data

• Correlate with producer src

• Infer from desc/headings

(1) Some possible generators:

Cool ideas (i.e. future work)

•Common subexpression

• Fast literal search

• Boyer-Moore, or

• Knuth-Morris-Pratt

•Hand-assemble VM?

• JIT

(2) Some possible optimizations:

Algorithmic

• Regex to RPL

• App config to RPL

• Format str to RPL

Statistical/ML

• Learn from sample data

• Correlate with producer src

• Infer from desc/headings

(1) Some possible generators:

Rosie is self-hosting
▪ Rosie is a parser, and Rosie is used to parse Rosie Pattern Language

▪ About 110 lines of RPL (core) to define the RPL

▪ Could support multiple versions of RPL, even different dialects

▪ Non-trivial user extensions to RPL can be enabled by:
– Specifying RPL for the extension (to RPL)
– Writing a compiler “plug-in” for the extension
– The compiler plug-in interface has not yet been designed… hint!

$ rosie match -o line '!{[:space:]*$} !{[:space:]* "--"}' rpl_1_1.rpl | wc
 111 652 4155

